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Abstract

Tracking surfaces is a challenging issue for a realistic simulation of
fluids in interaction with other fluids or solid objects. Level set meth-
ods is the state of the art methodology to discretize the movement of a
surface in any kind of flow field, by representing it as a scalar variable
that is advected by numerical schemes similar to the advection of pas-
sive tracers. Here, we apply level set methods to a Boussinesq model,
in order to simulate air and water as it moves around its horizontally
stratified equilibrium position. The numerical model tends to mix air
and water in the presence of shear instability and resulting interme-
diate densities are unrealistic for air and water. In order to track the
water surface, a level set function is implemented. To reduce unreal-
istic mixing a relaxation approach is proposed: Densities that differ
from that of air and water are slightly but consequently restored back
to its reference value. Challenges remain in the optimization of this
method: A weak relaxation hardly reduces mixing, whereas strong
relaxation tends to result in unphysical behaviour.
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1 Introduction

Air and water are two fluids that are, although completely different from a
chemical point of view, physically fairly similiar. Neglecting viscosity and
compressibility, they only differ in their density for physical purposes. By
scaling analysis, we may find the same phenomenon governing the fluids
motion in the ocean as well as in the atmosphere, although on different time
and length scales. Hence, investigating fluid dynamics often means to treat
the fluid as if it could represent air or water interchangeably. However, the
physics that appear while studying the interaction between both fluids do not
arise from the physical models we are used to investigate while looking at
these fluids seperately. Instead, the surface between air and water is largely
dominated by effects such as the inability to mix: From a chemical point of
view air and water may be found in a heterogenous mixture but rather not
in a homogeneous one (apart from tiny amounts of oxygen that is solved in
water). Hence, the simulation of propagating surfaces need to involve more
than just equations of motions as known for the fluids seperately.

Here, we present level set methods as developed by others mainly for the
purpose of movie rendering, for realistic interactions between fluids and/or
solids. Level set methods may also be used as numerical technique to im-
plement unresolved mechanisms such as surface tension. We apply level set
methods in order to track the surface between air and water in a simulated
2D tank including gravity. Starting point is, as can be seen in Figure 1 a
non-hydrostatic but Boussinesq model, that involves mixing, as arising from
the numerical schemes. We use level set methods and a relaxation approach
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to reduce the mixing in the model. Section 2 defines the mathematical back-
ground for level set methods closely following previous work and section 3
its numerical implementation. The relaxation approach is presented in sec-
tion 4 in detail. Section 5 presents some results from implementing level set
methods and relaxation into the model for one experiment with the model.
Section 6 draws a conclusion and discusses the results and finally, section 7
provides some perspectives for future work.

Figure 1: Mixing of two fluids with different density as arising from shear
instability in the Boussinesq model. Mixing occurs for fluids such as fresh
water and sea water but not for air and water due to chemical processes.

2 Mathematical definition and properties

In this section the notation is mainly adopted from [1], please see [2] or [4]
for similiar approaches of defining the level set function.

In order to follow the movement of water in a 2D tank we may regard
its area as a set Ω, so that all points x = (x, z) in a cartesian x,z-coordinate
system that satisfy x ∈ Ω are considered to be water. All points x with
x /∈ Ω are thus air.

We aim to track the interface Γ, i.e. the surface between air and water,
as the fluids move around in the tank. The interface Γ is mathematically the
boundary of Ω,

Γ = ∂Ω. (1)

By defining now the level set function Φ, with properties such as

Φ(x, t)


> 0 if x ∈ Ω

< 0 if x /∈ Ω

= 0 if x ∈ ∂Ω = Γ,

(2)

we obtain a scalar quantity that is defined for every point x of our domain (i.e.
tank). See Figure 2 as a schematic example. We want the level set function
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Φ to follow at any time t the flow field u(x, t) = (u(x, z, t), w(x, z, t)), hence
its value shall not change along a trajectory. From an Eulerian point of view
we thus have

DΦ

Dt
=
∂Φ

∂t
+ u · ∇Φ = 0. (3)

X

Z

Φ < 0

Φ > 0

Γ

Figure 2: 2D tank with water and air. The level set function Φ is defined to
be positive for water and negative for air. The interface Γ is located where
Φ = 0.

2.1 Distance function

So far only the sign of the level set function is defined. We now further
specify its absolute value, by regarding Φ as a distance function that still
satisfies equation (2) and includes the information of the distance d from any
point x in the domain to the interface Γ. So that Φ becomes

Φ(x, t) = ±d (4)

with the sign of d to chosen positive for water and negative for air. For
practical purposes it is not necessary to define the distance far away from the
interface, but still defining the level set function actually as distance function
comes along with a control of the interface thickness γ that is numerically
on the order of a few grid points.

3 Numerical implementation

The general procedure is now as follows: From equation (2) and (4) we set
up a new state variable corresponding to our level set function, which is then
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Figure 3: The level set function is set up as distance function. The distance
from the interface is measured in grid cells with a maximum value of half the
interface thickness γ. Here γ = 6.

on every time step advected by the model variable u as described in equation
(3) in order to follow the density surface. The zero level set of Φ(x, t) is then
regarded as the propagating interface Γ(t).

3.1 Initialization of the level set function

We start our model from rest, i.e. at t = 0 the following variables vanish

u(t = 0) = ω(t = 0) = 0 (5)

with ω being the vorticity. Instead, we set a certain density ρ(x, t = 0) = ρ0
as initial conditions. We deduce ρ0 from an initial interface Γ0 = Γ(t = 0) and
its corresponding level set function Φ0. Γ0 should be smooth and appropriate
to represent a water surface. The density ρ0 is then

ρ0 =

{
ρwater for {x | Φ0 > γ/2}
ρair for {x | Φ0 < γ/2}.

(6)

For numerical purposes we introduce the interface thickness γ, that is usu-
ally measured in grid cells. For γ → 0 we encouter numerical problems as
the resulting buoyancy torque ∂b

∂x
= − ∂ρ

∂x
goes to very large values. Hence,

choosing γ on the order of a few grid cells is appropriate. The density close
to the interface should be set up as a smooth change from ρair to ρwater.

3.2 Initialization of the distance function

Instead of setting up a level set function with arbitrary values positive values
for water and negative for air, we let the distance function be our level set
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function, which defintion follows then from equation (4). Although a distance
of a point to a curve might be mathematically well defined, numerically this
solution is not trivial and different solutions with varying computing time
exist. Here we propose the following:

Let the level set function temporarily be initialized as follows

Φ̃0 =

{
γ
2

for x ∈ Ω,

−γ
2

for x /∈ Ω.
(7)

The main idea is now to smooth Φ̃0 by averaging with its neighbours.
Hence, we apply the following γ × γ stencil on every grid point of Φ̃0

1

γ2
·

1 · · · 1
...

. . .
...

1 · · · 1

(8)

For every x at least γ/2 away from the interface this does not change the
value of Φ̃0 there, so that this computation may be skipped to reduce the
computing time. For a grid cell that is located on Γ0, we average as many
grid cells with positive values as with negative and hence obtain our zero-
level set at the interface. This is exact in the case where the curvature of Γ0

vanishes but still a good approximation in other cases. In fact, applying the
stencil from (8) on Φ̃0 yields Φ0 an approximation of the distance function,
that can be used as level set function.

An Example of this discrete distance function is given in Figure 3. We
see that the interface thickness γ is largely maintained also for curved parts
of Γ.

4 Relaxation approach to reduce mixing

The property whether two fluids mix arises from chemical processes. Usually
the advective schemes of a numerical model involve mixing, hence we seek
here to find a method that reduces the effect of mixing.

4.1 Restoring to the initial density

We choose a relaxation approach in order to restore the density of our fluid
back to its reference value. The level set function is used to choose whether
the reference density is that from air or from water. Let ρ(x, t) be the state
vector of density at a given time t, and ρ(x, t)ref the reference density at
that point. Please note that the reference density is time dependent in an
Eulerian formulation as the interface moves. For some t a given point x may
represent water, whereas at another t this point might be air. The reference
density is found via

ρ(x, t)ref =


ρwater for all {x | Φ(x, t) > ε}
ρair for all {x | Φ(x, t) < −ε}
undefined for all {x | |Φ(x, t)| < ε}.

(9)
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with a small parameter ε which represents the threshold thickness, where
relaxation is applied. Normally we choose

0 < ε <
γ

2
, (10)

so that restoring is not applied directly at the interface but at some distance
d > ε in order to avoid too steep density gradients. The case where ε = γ/2
involves no restoring, as max(Φ) = γ/2. Having found the reference density
we restore the present density ρ to a corrected density ρ′ on every time step
by

ρ′(x) = ρ(x)− λ(dt) (ρ(x)− ρref (x)) (11)

with λ(dt) the relaxation parameter, that is here given as explicity dependent
on the numerical time spacing dt. To obtain a relaxation parameter that is
independent on time t, we choose λ to be proportional to dt, by

λ(dt) = λ0 dt . (12)

It is obviously necessary to choose

0 ≤ λ(dt) ≤ 1 (13)

as negative values correspond to a repulsion and λ > 1 to an overshooting.
λ = 0 is the case of no relaxation, and λ = 1 a perfect relaxation that restores
the density immediately back to its reference value.

4.2 Re-set up the level set function

Corresponding to equation (3) the numerical model treats the level set func-
tion as a tracer and advects exactly in the same way as the density is ad-
vected. As discussed, without relaxation the density of air and water starts
to mix, as any numerically advected gradient tends to disperse. We choose
therefore to re-set up the level set function based on the density, with the
following assumption

Γ = {x|ρ(x) = ρ̄} (14)

with ρ̄ = (ρair + ρwater)/2. Hence, we assume that the mean value of water
and air density is an appropriate representation of the interface Γ. From Γ
we then deduce the level set function by calculating the distance as already
described in section 3.2.

This procedure is not done every time step. Instead, we identify another
parameter m, an integer that quantifies the number of integration steps until
a new level set function is set up. The parameter m impacts the resulting
physics as it influences the relaxation itself and the performance, as the re-set
up is computationally costly.
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5 Results

We follow the procedure of the previous sections to obtain the level set func-
tion and implement it in the advective scheme of the numerical model. The
model is then started from rest with initial conditions as shown in Figure 4.
The surface obeys a hyperbolic tangent with a steep step in the middle of
the domain, in order to have a strong buoyancy torque that sets the fluids in
motion. The level set function shows mainly the values ±γ/2 and only next
to Γ it is actually representing a distance function. The interface as shown
below is rendered as the 0th contour line of Φ.

At some later time t = 0.55 that is reached after 169 integrations, shear
instabilities tend to curl the surface, known as Kelvin-Helmholtz instability,
as presented in Figure 5. The level set function follows that movement so
that a spiral shaped interface becomes visible.

Even after about 1000 integrations and a complicated flow field, the level
set function is still able to track the surface as seen in Figure 6. A closer
look reveals that some parts of either fluids deattached and drops are visible.
Nevertheless, fine structures as the spiral in the middle of the domain, which
is still present in buoyancy is not captured by the interface.

The resulting interface looks fairly different from that obtained without
relaxation (Fig. 1). We conclude that the relaxation approach therefore
affects the model physics, whereas the details of this influence remain unin-
vestigated.

5.1 Quantifying mixing

Furthermore, we analyze the effectivity to reduce mixing with means of prob-
ability density distributions as shown in Figure 7. The case of applying re-
laxation is compared to the same simulation without restoring at t = 5, i.e.
after about 2000 integrations. Obviously reduced are densities between 100
and 950, whereas relaxation also results in a broader peak around ρair = 1
and ρwater = 1000, including completely unrealistic negative densities. Since
the density enters the model equations only in terms of its torque, negative
densities seem to cause less problems than they would do in the real world,
as the numerical scheme remains stable.

6 Concluding discussion

We implemented a level set function into an existing 2D model, that in-
tegrates the vorticity equation for non-hydrostatic fluids with Boussinesq
approximation. The level set function is advected in Eulerian manner, and
follows largely the flow field. Especially for fine structures such as spirals
and filaments, the level set function seem to lack in accuracy, which mainly
arises from a slightly dispersive advective scheme.

A relaxation approach was succesfully tested, although we recognize that
its behaviour is still far from optimum. Potential may arise from tuning the
level set and relaxation parameters in order to optimize the density restoring.
A weaker restoring was observed to be not able to reduce the mixing, whereas
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Figure 4: Initial conditions. The model starts from rest, but with a step
in density (upper; white: air, blue:water). The initial buoyancy torque will
accelerate the fluids and let them swing around the equilibrium position of
fully horizontally stratified fluids. (middle) The level set function at t = 0.
(lower) The intital interface Γ as resulting from Γ = {x | Φ(x, t = 0) = 0}.
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Figure 5: Kelvin-Helmholtz-Instability. Due to the level set function the in-
terface is tracked and the typical spiral shape of Kelvin-Helmholtz instabilites
becomes visible.
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Figure 6: The level set function is able to follow complex interfaces including
water drops.



Level Set Methods - Milan Klöwer 12

Figure 7: Relaxation reduces the amount of grid cells with undesired inter-
mediate density as resulting from mixing. The histogramm was computed
with a bin size of 10 density units.

a stronger restoring was observed to largely change the model physics, as fine
structures suddenly disappear.

7 Perspectives

Although some progress was made by using level set methods to reduce mix-
ing, the realistic simulation of surface gravity waves with an air-water in-
terface remains a challenge. The relaxation method as presented here is not
optimized, physical features such as surface tension are not implemented yet.
Here, we want to provide perspectives for future research in adjusting the
model equations to also allow for settings where the Boussinesq assumption
does not hold.

7.1 The non-Boussinesq case

In the case of air and water, we know that waves that travel at the interface
may become unstable, as for swell at the beach. They increase in height,
bow forward and break, producing turbulence that transports their energy
to small scales where dissipation occurs. However, spiral-like wave breaking
as known from Kelvin-Helmholtz instabilities are not observed for air-water
interfaces.

We suggest, that this results, as the numerical model is actually solv-
ing the non-hydrostatic Euler equations with the Boussinesq approximation,
which idea is as follows: Differences in density are assumed to result in a
vertical acceleration while multiplied by the gravity acceleration g. In first
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order, they do not affect the time derivative on the left hand side, where
density ρ0 is assumed to be constant where not multiplied with g, as follows
from the assumption that

ρ1 − ρ2
ρ2

� 1 or
ρ1
ρ2
≈ 1. (15)

That means, density differs only slightly in terms of its ratio. The Boussinesq
approximation is valid for e.g. internal waves, where density is still on the
order of 1000 but may vary as resulting from variation in temperature or
salinity. However, the Boussinesq approximation does not hold for air and
water, as equation (15) is strongly violated.

In order to simulate therefore realistically surface gravity waves it is nec-
essary to change the model equations by introducing a true momentum
m = ρu, the non-hydrostatic Euler equations become (G. Roullet, 2014,
personal communication)

∂m

∂t
+ J (ψ,m) = −∇p+ ρg (16a)

∂ρ

∂t
+ J (ψ, ρ) = 0 (16b)

with J the Jacobian, ψ the streamfunction and p the pressure. Taking the
curl yields the non-Boussinesq Euler equations in vorticity formulation

∂ζ

∂t
+ J (ψ, ζ) = −g ∂ρ

∂x
+ J (ρ,K) (17a)

ζ = ∇ · (ρ∇ψ) (17b)

with K = ‖u‖2/2, the kinetic energy density and the density modified
vorticity ζ. Numerical problems arise as the previous Laplacian ∆ = ∇·∇ is
not uniform anymore, but in sandwich with the density and therefore chang-
ing for every integration. Hence, a cholesky factorization is not appropriate.

The behaviour of these modified equations and fast numerical schemes to
invert the vorticity for varying Laplcians need to be investigated in future
research projects.
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