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Abstract

Weather and climate models are based on computations of real numbers, which

are represented on a computer in 64 bits with a finite numerical precision.

The standard are so-called floating-point numbers (floats), that encode a real

number in terms of sign, exponent and significant bits. Many bits, especially

of the significand, do not contain real information, which promotes the use of

reduced precision floats with less than 64 bits. However, floats might not be the

best bit-wise representation for real numbers in numerical models of weather

and climate. Posit numbers are a recently proposed alternative, which extend

the floating-point standard by the concept of regime bits. Posits therefore

have a higher numerical precision around one, yet a wide dynamic range of

representable numbers. We study two weather and climate models of low and

medium complexity, the Lorenz 1963 system and a shallow water model, to

present benefits of posits compared to floats at 16 bit. As a standardised posit

processor does not exist yet, we use posit arithmetic on a conventional CPU via

a Julia-based emulator. The fractal dimension of the Lorenz attractor is clearly

improved with posits compared to floats. The finite difference algorithms of the

shallow water model are written in a way to overcome the limitations of 16bit

numbers, which greatly improves the model’s resilience to rounding errors and

arithmetic overflows of both number formats. Forecasts with the shallow water

model based on 16bit posits with 1 or 2 exponent bits are clearly more accurate

than half precision floats and the error due to the rounding errors remains much

lower when compared to the discretisation error. Although this study focuses

on idealised simulations, the results show potential for weather and climate

modelling with dynamical cores that are largely based on 16bit computations.

Especially 16bit posits with 2 exponent bits provide a great potential for many

weather and climate models, due to its 32 orders of magnitude-wide range of

representable numbers. Together with a 32bit posit format, a posit processor

based on these two formats could greatly support the transition of models to

be rewritten for less than 32 bit. We believe that high performance computing

for Earth System modelling would benefit greatly from a processor that would

support both 16 and 32bit posit formats.
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1 Introduction
Weather and climate models provide predictions that are of great importance for society

and economy. The Earth’s climate system remains very difficult to predict even with the

computational resources of the world’s largest supercomputers, due to its complexity and

non-linear dynamics that couple all features from the smallest time and length-scales to

the largest. The forecast error of a weather forecast model has several origins [Palmer,

2015, 2012]:

(i) Initial and boundary condition errors, which result from observations, data assimi-

lation and external factors

(ii) Model error, i.e. the difference between the mathematical model and the real world

(iii) Discretisation error resulting from a finite spatial and temporal resolution of the

discretised equations

(iv) Rounding errors with finite precision arithmetic.

In general, the forecast error is dominated by (i-iii), depending on the forecast variable

and the forecast lead time. In contrast, rounding errors are usually negligible with the

IEEE 754 standard on 64bit double precision floating point numbers [IEEE, 2008], which

is still the standard for the majority of operational weather forecasts and in climate

models.

Research on reduced precision floating-point arithmetics is motivated by the potential

for faster processing and communication between different elements of the computing

architecture. The gained speed can be traded for increased complexity of simulations,

resulting in more accurate predictions of weather and climate. The Integrated Forecast

System at the European Centre for Medium-Range Weather Forecasts can be run almost

entirely at single precision (32bit) without a decrease in forecast skill [Váňa et al., 2017]

but in 60% of the run-time. Similar progress was made at MeteoSwiss with their weather

forecast model COSMO [Rüdisühli et al., 2013].

The recent boom of deep learning techniques, that require low numerical precision

but high computational performance, will influence hardware development to offer more

flexibility for the use of reduced numerical precision. Using simplistic chaotic models, it

was shown that the majority of 64bits at double precision do not contain real information

[Jeffress et al., 2017]. Running algorithms used for weather forecast models at precision

lower than single, for example with half precision (16bit) floats, is an active field of
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1. Introduction

research, but remains challenging [Düben, 2018; Düben & Palmer, 2014; Hatfield et al.,

2018; Thornes et al., 2017]. Most research on reduced precision modelling for weather

and climate applications makes use of software emulators [Dawson & Düben, 2017]

that provide other arithmetics than the widely supported single and double precision

floats. This comes with the disadvantage that simulations are orders of magnitude slower.

However, software emulation allows a scientific evaluation of the use of reduced numerical

precision for weather and climate simulations with no need to port the models to special

hardware, such as field programmable gate arrays (FPGAs, Russell et al. [2017]).

Posit numbers are a recently proposed alternative to floats and claim to provide more

precision in arithmetic calculations with fewer bits in algorithms of linear algebra or

machine learning [Gustafson & Yonemoto, 2017]. However, posits remain untested for

weather and climate simulations. This study therefore focuses on posit arithmetic as an

alternative to floating-point arithmetic at the appealing size of 16bit for weather and

climate models. We use a Julia-based emulator on a conventional CPU, as posit hardware

is not yet available. Posit research currently focuses on hardware implementations

[Chaurasiya et al., 2018; Chen et al., 2018; Glaser et al., 2017; van Dam, 2018].

The study is structured as follows: Section 2 introduces the posit number format and

the concept of decimal precision. We analyse the dynamics of a chaotic model at low

complexity with posit arithmetic using the Lorenz 1963 system in section 3. In section

4 we evaluate posit arithmetic in the shallow water equations, a two dimensional fluid

circulation model. Section 5 discusses the results and summarises the conclusions.

This study has recently been accepted for publication [Klöwer et al., 2019].
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2 Posit numbers

2.1 The posit number format

Following the IEEE standard on floating-point arithmetic [IEEE, 2008], floats encode a

real number in terms of a sign bit, and a fixed number of exponent and significant bits

(16bit half precision floats have 1 sign, 5 exponent and 10 significant bits). Consequently,

they have a constant number of significant digits throughout their dynamic range of

representable numbers. This is in contrast to posit numbers, which arise from the idea

to project the real axis onto a circle (Fig. 2.1). Although probably useless for real

applications, the simplest posit format in 2bit illustrates some main properties of the

posit number format: Posits do not have any redundant bit patterns. There is one

pattern for zero, one for (complex) infinity and no bit pattern for Not-a-Number (NaN,

complex infinity serves as a replacement). This is in contract to half precision floats,

that have 2046 bit patterns that describe NaN, or 3% of all representable numbers. All

posit formats have as many numbers between 0 and 1 as between 1 and infinity. The

circle is split into regimes, determined by a constant useed, which is always found in the

north-west on the posit circle (Fig. 2.1b) and will be defined shortly. Further regimes

are defined by useed±2, useed±3, useed±4, etc. (Fig. 2.2). To encode these regimes into

bits, posit numbers extend floating-point arithmetic by introducing regime bits, that are

responsible for the dynamic range of representable numbers. Instead of having a fixed

length, regime bits are defined as the sequence of identical bits after the sign bit, which

are eventually terminated by an opposite bit. The flexible length allows the significand

(or mantissa) to occupy more bits when less regime bits are needed, which is the case

for numbers around one. A resulting higher precision around one is traded against a

gradually lower precision for very large or very small numbers. A positive posit number

p is decoded as [Gustafson, 2017; Gustafson & Yonemoto, 2017] (negative posit numbers

are converted first to their two’s complement, see Eq. 2.3)

p = (−1)sign bit · useedk · 2e · (1 + f) (2.1)

where k is the number of regime bits. e is the integer represented by the exponent bits

and f is the fraction which is encoded in the fraction (or significant) bits. The base

useed = 22es is determined by the number of exponent bits es. More exponent bits

increase - by increasing useed - the dynamic range of representable numbers for the cost

of precision. The exponent bits themselves do not affect the dynamic range by changing
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2.1. The posit number format

Figure 2.1: The two simplest posit number systems: (left) 2bit and (right) 3bit; obtained
by projecting the real axis onto a circle. The bit patterns are marked on the outside
in black and the respective values in purple on the inside of each circle. The value of
useed depends on the number of exponent bits as explained in the text. Reproduced
from Gustafson [2017].

the value of 2e in Eq. 2.1. They fill gaps of powers of 2 spanned by useed = 4, 16, 256, ...

for es = 1, 2, 3, ..., and every posit number can be written as p = ±2n · (1 + f) with a

given integer n [Chen et al., 2018; Gustafson & Yonemoto, 2017]. Throughout this article

we will use a notation where Posit(n,es) defines the posit numbers with n bits including

es exponent bits. A posit example is provided in the Posit(8,1)-system (i.e. useed = 4)

57 ≈ 01110111Posit(8,1)

= (−1)0 · 42 · 21 · (1 + 2−1 + 2−2) = 56
(2.2)

The sign bit is given in red, regime bits in orange, the terminating regime bit in brown,

the exponent bit in blue and the fraction bits in black. The k-value is inferred from the

number of regime bits, that are counted as negative for the bits being 0, and positive, but

subtract 1, for the bits being 1. The exponent bits are interpreted as unsigned integer

and the fraction bits follow the IEEE floating-point standard for significant bits. For

negative numbers, i.e. the sign bit being 1, all other bits are first converted to their two’s

complement (denoted with an underscore subscript) by inverting all bits and adding 1,

−0.28 ≈ 11011110Posit(8,1) = 10100010

= (−1)1 · 4−1 · 20 · (1 + 2−3) = −0.28125.
(2.3)
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2.1. The posit number format

Figure 2.2: Posit regimes visualised on the posit circle. Typical values for useed are 2, 4
or 16, depending on the number of exponent bits in the respective posit format. The
angles that are spanned by the regimes on the unit circle is proportional to the amount
of representable numbers within. Bit patterns on the outside denote the regime bits
including the terminating bit. Regimes are numbered by their k-value. Reproduced from
Gustafson [2017].
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2.1. The posit number format

After the conversion to the two’s complement, the bits are interpreted in the same way

as in Eq. 2.2.

Furthermore, posits also come with a no overflow/no underflow-rounding mode:

Where floats overflow and return infinity when the exact result of an arithmetic operation

is larger than the largest representable number (maxpos), posit arithmetic simply returns

maxpos instead, and similarly for underflow where the smallest representable number

minpos is returned. This is motivated as rounding to infinity returns a result that is

infinitely less correct than maxpos, although often desired to indicate that an overflow

occurred in the simulation. Instead, it is proposed to perform overflow-like checks on the

software level to simplify exception handling on hardware Gustafson [2017].

The posit number framework also highly recommends quires, an additional register on

hardware to store intermediate results. Fused operations like multiply-add can therefore

be executed with a single rounding error without the rounding of intermediate results.

The quire concept could also be applied to floating-point arithmetic, but is technically

difficult to implement on hardware as the required registers would need to be much larger

in size. For fair comparison we do not take quires into account. Appendix A.3 includes a

short discussion on the benefits of quires. The posit number format is explained in more

detail in Gustafson [2017].

1julia > # define posit environment

julia > using SigmoidNumbers

3julia > Posit161 = Posit {16 ,1};

julia > # convert float to 16bit posit , add

5julia > a = Posit161 (12.3);

julia > c = a+a;

7julia > # bits split in sign , regime , exponent and fraction

julia > bits(c," ")

9"0 1110 0 1000100110"

julia > Float64(c) # convert back to double

1124.59375

Figure 2.3: Example use of the posit emulator SigmoidNumbers in the Julia shell.

In order to use posits on a conventional CPU we use the posit emulator SigmoidNum-

bers written by Isaac Yonemoto in Julia Bezanson et al. [2014]. This emulator defines

conversion to and from floats and arithmetic operations with posits (see Fig. 2.3 for an

example). Consequently, posit arithmetic can be used for the numerical integration of

the Lorenz equations (section 3) and the shallow water model (section 4).
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2.2. Decimal precision

2.2 Decimal precision

The decimal precision is defined as [Gustafson, 2017; Gustafson & Yonemoto, 2017]

decimal precision = − log10 | log10(
xrepr

xexact
)| (2.4)

where xexact is the exact result of an arithmetic operation and xrepr is the representable

number that xexact is rounded to, given a specified rounding mode. For round-to-nearest

rounding mode, the decimal precision approaches infinity when the exact result approaches

the representable number and has a minimum in between two representable numbers.

This minimum defines the worst-case decimal precision, i.e. the decimal precision when

the rounding error is maximised. The worst-case decimal precision is the number of

decimal places that are at least correct after rounding.

Fig. 2.4a compares the worst-case decimal precision for various 16bit number formats:

Half precision floats, 16bit posits with various number of exponent bits, 16bit integers

and the fixed-point format Q6.10 (6 integer bits, 10 fraction bits). Floats have a nearly

constant decimal precision of almost 4 decimal places, which decreases for the subnormal

numbers towards the smallest representable number minpos. Posits, on the other hand,

show an increased decimal precision for numbers around 1. Posits with 1 or 2 exponent

bits also have a wider dynamic range than half precision floats, in exchange for less

precision for numbers on the order of 104 as well as 10−4. Due to the no overflow/no

underflow-rounding mode, the decimal precision is slightly above zero outside the dynamic

range.

The decimal precision of 16bit integers is negative infinity for any number below

0.5 (round to 0) and maximised for the largest representable integer 215 − 1 = 32767.

Similar conclusions hold for the fixed-point format Q6.10, as the decimal precision is

shifted towards smaller numbers by a factor of 1
2 for each additional fraction bit. This

indicates problems for reduced precision modelling: Rescaling of the equations is desired

to place many arithmetic calculations near the largest representable number, however,

any result beyond will lead to disastrous results, as integer overflow usually returns a

negative value following a wrap around behaviour. Flexibility regarding the dynamic

range can be achieved with integer arithmetic if fixed point numbers are used [Russell

et al., 2017]. However, we did not achieve convincing results with integer arithmetic for

the applications in this paper (see section 3.2).
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2.2. Decimal precision

Figure 2.4: (a) Decimal precision of various 16bit number formats. Dashed vertical lines
indicate the dynamic range of representable numbers for each format. (b) Histogram of
results of all arithmetic operations in the rescaled Lorenz system, that are subject to
rounding errors, considering absolute values.
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3 Lorenz 1963 system

3.1 Methods

The Lorenz system (L63, Lorenz [1963]) is a chaotic attractor and serves as a simplistic

model for atmospheric convection. It is an extensively studied toy model for forecast

uncertainty [Jeffress et al., 2017; Kwasniok, 2014; Lorenz, 1963; Tantet et al., 2018] and is

used here to investigate the accumulation of rounding errors in the numerical integration

of a chaotic system. The Lorenz system consists of the variables x,y and z that are

described by the following non-linear differential equations

dx

dt
= σ(y − x) (3.1a)

dy

dt
= x(ρ− z)− y (3.1b)

dz

dt
= xy − βz (3.1c)

with the typical parameter choices σ = 10, ρ = 28 and β = 8
3 , that permit chaotic

behaviour.

To find the optimal number format to solve Eq. 3.1 requires considering the dynamic

range of all intermediate calculations. It is possible to influence this dynamic range

using a rescaling of the equations via a simple multiplication of the variables with a

constant rescaling factor s. The rescaled variables are denoted as x̃ = sx, and similarly

for ỹ, z̃. Fig. 2.4b shows histograms for all numbers that are used to solve the Lorenz

system (including all intermediate calculations). A comparison to the decimal precision

in Fig. 2.4a reveals the benefit of rescaling, especially for posit arithmetic: To profit from

the increased decimal precision around 1, a scaling with 1/10 is proposed to shift most

calculations towards the centre of the dynamic range of representable numbers. Due to

the constant decimal precision for floats, rescaling is less relevant for float arithmetic as

long as no overflow nor underflow occurs. For integers, on the other hand, the Lorenz

equations should be upscaled by a factor of approximately 100, to shift the range of

numbers to a higher decimal precision.

We solve the equations using a fourth order Runge-Kutta method [Butcher, 2008].
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3.2. Results

Each substep in the time integration can be written as

x̃n+1 = x̃n +RKx (ỹn − x̃n) (3.2a)

ỹn+1 = ỹn +RKy

(
x̃n(ρ− z̃n

s
)− ỹn

)
(3.2b)

z̃n+1 = z̃n +RKz

(
x̃n
ỹn

s
− βz̃n

)
(3.2c)

where RKx, RKy, RKz contain the Runge-Kutta coefficient and the time step ∆t. RKx

also contains the parameter σ. The superscripts n and n+ 1 denote the current and next

substep.

The rescaling of the Lorenz system has its limitations: The non-linear terms in

Eq. 3.2 involve a division by the scaling constant s, which leads to the result of the

arithmetic operations z̃
s , ρ −

z̃
s , and ỹ

s being invariant under scaling. This is observed

in the histograms of arithmetic results (Fig. 2.4b), as high counts of values between

1 and 50 exist for different choices of s. A changing shape of the histogram with s is

a consequence. Following these results an underlying challenge of reduced precision

modelling becomes apparent: One has either to find a number format that fits the range

of computed numbers, or rescale/rewrite the equations to optimise their range for a given

number format.

3.2 Results

Regardless of the initial conditions, the Lorenz system will evolve towards a set of (x, y, z)

points called attractor (the x,z-section of the attractor is shown in Fig. 3.1a). This

attractor is strange, i.e. its geometric structure cannot be described in two dimensions,

but is of fractal nature. While points on the model trajectory will get infinitesimally

close to each other, the trajectory of the analytical Lorenz system will never repeat itself.

However, for the discretised model with finite precision variables, only a finite amount of

distinct states can be represented and the model trajectory will necessarily repeat itself

if integrated for long enough.

Integrating the Lorenz system with half precision floats yields an attractor that is

repeating itself fairly early and the space that is filled by the line of the trajectory is

significantly smaller when compared to the space of a trajectory with double precision

(compare Fig. 3.1a and b). However, when using posits and a rescaling factor of s = 0.1

the representation of the attractor is improved significantly (Fig. 3.1c). The results for

posits look similar to the results with half precision floats (16bit) if no rescaling was used

10



3.2. Results

Figure 3.1: The Lorenz attractor computed with different arithmetics and precision. (a)
64bit double precision floats, (b) 16-bit half precision floats, (c) 16-bit posits with 1
exponent bit and (d) 16-bit integers. The scaling of the Lorenz equations (Eq. 3.2) is
(a,b) s = 1, (c) s = 0.1 and (d) s = 100. All curves are integrated for the same number
of time-steps.
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3.2. Results

(not shown here). The solution of the Lorenz system with integers fails to represent the

true dynamics as the model converges to the origin (Fig. 3.1d).

We have calculated the so-called fractal dimension as a diagnostic to quantify the

fidelity of simulations of the discretised Lorenz equations when different number formats

are used. The fractal dimension quantifies how space-filling an attractor is. Using a

box-counting algorithm, we estimate the dimension of the posit attractor to be 1.78,

whereas the half precision float attractor is only 1.29, compared to the true value of

approximately 2.06 [Grassberger & Procaccia, 1983; McGuinness, 1983].
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4 Shallow water model

4.1 Methods

This section will evaluate the different number formats (16bit half precision floats, 16bit

posits with 0,1 or 2 exponent bits) when solving the shallow water equations. The shallow

water equations result from a vertical integration of the Navier-Stokes equations under

the assumption that horizontal length scales are much greater than vertical scales. This

assumption holds for many features of the general circulation of atmosphere and ocean

[Gill, 1982; Vallis, 2006]. The shallow water equations for the prognostic variables velocity

u = (u, v) and sea surface elevation η are

∂u

∂t
+ (u · ∇)u + f ẑ× u = −g∇η + D + F (4.1a)

∂η

∂t
+∇ · (uh) = 0. (4.1b)

For the atmosphere, η is interpreted as pressure [Gill, 1982]. The shallow water system

is forced with a zonal wind stress F. The dissipation term D removes energy on large

scales (bottom friction) and on small scales (diffusion). The non-linear term (u · ∇)u

represents advection of momentum. The term f ẑ × u is the Coriolis force and −g∇η
is the pressure gradient force, with g being the gravitational acceleration. Eq. 4.1b

is the shallow water-variant of the continuity equation, ensuring conservation of mass.

The domain is a zonally periodic rectangular channel of size 2000 km×1000 km, with a

meridional mountain ridge in the middle of the domain. A more detailed description

of the shallow water model, introducing the remaining parameters and variables in Eq.

4.1, is presented in Appendix A.1. The shallow water equations are discretized using

2nd order centred finite differences on an Arakawa C-grid [Arakawa & Lamb, 1977] with

a grid spacing of ∆ = 20 km (100x50 grid points) and the Runge-Kutta fourth order

method [Butcher, 2008] is used for time integration. The advection terms are discretised

using an energy and enstrophy conserving scheme [Arakawa & Hsu, 1990].

To also test the use of the different number formats for the representation of passive

tracers in atmosphere and ocean, we extend the shallow water equations with an advection

equation. Tracers could, for example, be temperature and salinity in the ocean or aerosols

in the atmosphere, which are regarded here, for simplicity, as passive (i.e. they do not

influence the flow). The change of the distribution of a passive tracer q that is advected
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4.1. Methods

by the underlying flow field is described by

∂q

∂t
+ u · ∇q = 0. (4.2)

We discretise Eq. 4.2 with a semi-Lagrangian advection scheme [Diamantakis, 2013;

Smolarkiewicz & Pudykiewicz, 1992], which calculates the tracer concentration for a

given grid cell from the concentration at the previous time step at a departure point,

which is determined from the flow field. As the departure point is in general in between

grid nodes an interpolation is required to find the concentration at the departure point.

The discretisation of Eq. 4.2 is therefore turned into an interpolation problem. Further

details concerning the semi-Lagrangian advection scheme and its reformulation into a

non-dimensional relative coordinate form to work with 16bit arithmetics is discussed in

Appendix A.2.

For reduced precision it is essential to rescale the shallow water equations to avoid

arithmetic operations with very large or very small results, as the dynamic range of

representable numbers is limited (Fig. 2.4a). This is especially true for some sophisticated

schemes like the biharmonic diffusion [Griffies & Hallberg, 2000], which is often used to

remove energy from the grid scale to ensure numerical stability. For biharmonic diffusion

a fourth derivative in space is calculated. Due to the large dimension of geophysical

applications, this term can get very small O(10−20) while viscosity coefficients are typically

very large O(1011). The prognostic variables of Eq. 4.1 and 4.2 are typically O(1 ms−1)

for u, O(1 m) for η and O(1) for q. We can therefore retain their physical units in

the discretised numerical model. However, due to the grid spacing ∆ being large for

geophysical flows, we need to use dimensionless Nabla operators ∇̃ = ∆∇. The continuity

equation Eq. 4.1b, for example, is discretised with an explicit time integration method

as

ηn+1 = ηn +RKη

(
−∇̃ · (uh)n

)
(4.3)

where RKη is the Runge-Kutta coefficient times ∆t
∆ which is precomputed at high

precision, to avoid a division by a large value ∆ and a subsequent multiplication with

a large value for ∆t. The other terms are rescaled accordingly (f̃ = f∆; F̃ = F∆;

please see Appendix A.1 for further details and a discussion of the dissipation term D).

The entire numerical integration is performed using the various 16bit number formats.

However, posits are converted back to single precision floats for model output. Some of

the forcing and boundary terms that remain constant throughout the model integration

are computed at higher precision during model initialisation to avoid problems with

the dynamic range. Further details of the numerical integration of the shallow water
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4.2. Results

equations with respect to 16bit arithmetics are provided in Appendix A.1.

4.2 Results

The results will be discussed in four parts: Snapshots of single forecasts are used to

qualitatively assess the rounding errors of 16bit floats and posits. Ensemble forecasts

yield a quantitative measure for the expected contribution of rounding errors to the

forecast error. The impact of rounding errors on the climatological mean and variability

is discussed subsequently and finally histograms yield an insight in the problematic terms

that are prone to rounding errors.

Single forecasts The solution to the shallow water equations includes vigorous turbu-

lence that dominates a meandering zonal current. Using either float or posit arithmetic

with 16 bit the simulated fluid dynamics are very similar to a double precision reference:

As shown in a snapshot of tracer concentration (Fig. 4.1) stirring and mixing can be well

simulated with half precision floats and with 16bit posits (2 exponent bits). However,

the half precision simulation (Fig. 4.1c) deviates much faster than the posit simulation

(Fig. 4.1b) from the double precision reference (Fig. 4.1a). This provides a first evidence

that the accumulated rounding errors with posits are smaller than with floats. Only the

posit simulations without exponent bit suffer from numerical instabilities, due to the

limited dynamic range (Fig. 2.4a).

To provide evidence that the approaches taken here to allow 16bit simulations also

work on larger grids, we ran a single forecast on an 800x400 grid again at a resolution

of ∆ = 10km. The domain covered therefore spans 8000km in zonal and 4000km in

meridional direction and resembles a highly idealized circumpolar current. Although the

wind forcing is kept the same, we change the bottom topography slightly to create more

shear instabilities in the current. Additionally to the meridional ridge at x = Lx
2 three

additional ridges are placed at x = 0, Lx
4 and 3Lx

4 . The zonal positions of these ridges

are displaced a few grid points to inhibit a solution that is periodic with respect to the

meridional ridges. The simulation is spun-up to statistical equilibrium without solving the

tracer equation. After the spin-up phase the initial condition of the tracer concentration

(which we call temperature, although still a passive tracer) is prescribed by a hyperbolic

tangent in the meridional direction. The initially zonally constant temperature profile is

therefore immediately stirred by an already turbulent underlying flow field. This single

forecast is performed three times, using (i) 64 bit double precision arithmetic, (ii) 16bit

half precision floats and (iii) 16bit posits with 2 exponent bits.
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Figure 4.1: Snapshot of tracer concentration simulated by the shallow water model, based
on (a) double precision floats and (b) posit arithmetic (16 bit with 2 exponent bits)
and (c) half precision floats. The tracer was injected uniformly in the left half of the
domain 25 days before. This simulation was run at a resolution of ∆ = 10km (200x100
grid points). The corresponding video can be found at http://milank.de/videos/swm_
posit_tracer.mp4
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4.2. Results

Snapshots of temperature at different time steps after initialisation (Fig. 4.2 and

Fig. 4.3) as well as Fig. 4.4 indicate that 16bit simulations can provide useful forecasts.

16bit posits with 2 exponent bits clearly outperform half precision floats and closely

resemble the forecast based on 64bit double precision floats. However, some spurious

features, that are likely instabilities occurring due to rounding errors, are visible for 16bit

posits (Fig. 4.3b). These instabilities are not caused by the semi-Lagrangian advection

scheme but are also apparent in the underlying flow field. We assume that they can

be traced back to rounding errors associated with the sum of tendencies as outlined in

Appendix A.3, but a thorough analysis is needed to support or disprove this assumption.

These simulations provide evidence, that 16bit numbers are indeed promising to calculate

the semi-Lagrangian advection scheme once written in a non-dimensional and relative

coordinate formulation (see Appendix A.2 for details).

Ensemble forecasts Limited by the computational requirements to run an ensemble

of forecasts with software-emulated posits we consider again a shallow water model

of a small domain (2000 km×1000 km), discretised with only 100x50 grid points. The

forecast error in the shallow water model is computed as root mean square error (RMSE)

taking the model based on double precision floating-point arithmetics as reference truth.

We use the sea surface height (equivalent to pressure) to compute the forecast error

as this variable captures the large scale circulation. The forecasts are created based

on 280 different initial conditions from random start dates of a 50 year long control

simulation. Each forecast is performed several times from identical initial conditions but

with the various number formats. To compare the magnitude of rounding errors that are

caused by a reduction in precision to a realistic level of error that is caused by model

discretisation, we also perform forecasts at double precision that fall back to a 3rd-order

Runge-Kutta scheme for time integration and a simpler enstrophy conserving advection

scheme described in Sadourny [1975]. Both advection schemes have the same continuous

formulation, but the Arakawa & Hsu [1990] advection scheme has a wider stencil. We

normalise the RMSE by the climatological mean forecast error at very long lead times.

A normalised RMSE of 1 therefore means that all information of the initial conditions is

removed by chaos.

Clearly the best forecast is obtained for posit arithmetic with 1 or 2 exponent bits

(Fig. 4.4), with a small accumulation of rounding errors even for lead times of 100 days.

The forecast error for 16bit posits without exponent bit increases quickly (Fig. 4.4),

especially for short forecast lead times, but a persistence forecast, i.e. assuming the initial

conditions persist over time, is still worse (not shown). Half precision floats outperform
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4.2. Results

Figure 4.2: Snapshot of temperature (used as passive tracer) simulated by the shallow
water model, based on (a) double precision floats and (b) posit arithmetic (16 bit
with 2 exponent bits) and (c) half precision floats. This simulation was run at a
resolution of ∆ = 10km (800x400 grid points). The corresponding video can be found at
http://milank.de/videos/tracer_posit_hr.mp4

18

http://milank.de/videos/tracer_posit_hr.mp4


4.2. Results

Figure 4.3: As Fig. 4.2 but 50 days after model initialisation.
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Figure 4.4: Forecast error measured as the root mean square error (RMSE) of sea surface
height taking the double precision forecast as reference. The RMSE is normalised by
a mean forecast error at very long lead times. Solid lines represent the median of 280
forecasts per number format. The shaded areas denote the interquartile range.
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16bit posits without exponent bit, presumably due to the limited dynamic range of only

8 orders of magnitude compared to 12 for half precision floats (Fig. 2.4a). The forecast

error of half precision floats is larger than the discretisation error.

Climatological mean & variability A useful forecast model does not necessarily

have an accurate representation of the reference mean state. A systematic error in the

model integration can lead to a bias in the mean state or the variability around the mean

state, although of minor importance for short-range forecasts. In order to investigate the

effect of reduced precision arithmetics on mean and variability, we average the sea surface

height of the forecast ensemble over all time steps and similarly for variability, which is

computed as the standard deviation of sea surface height. Again, the integration with

double precision floats is regarded as reference truth, which shows a zonal current that is

deviated to the south when it passes over the ridge in the bottom topography (Fig. 4.5a).

The error, computed as difference to double precision floats, with 16bit posit arithmetic

is clearly negligible (Fig. 4.5d and e), whereas the simulation based on half precision

floats shows a less pronounced trough and ridge in the sea surface height, indicative of a

weaker mean current (Fig. 4.5b). A similar conclusion can be drawn for variability (Fig.

4.6): 16bit posits (1 or 2 exponent bits) do not alter the mean nor the variability of the

64bit double precision simulation. However, large forecast errors of half precision floats

coincide with errors in mean and variability and are on the same order of magnitude

as the discretisation error. We assume that 16bit posits without exponent bits suffer

from the no overflow no underflow rounding mode, as tendencies that are smaller than

the smallest representable number are round away from zero and therefore increase in

magnitude. An increase in the variability follow as shown in Fig. 4.6f.

Histograms To understand the limitations of the respective number systems to solve

the shallow water equations we compare histograms of numbers that occur in various

terms of the model integration with the decimal precision of floats and posits (Fig.

4.7). As mentioned earlier, the prognostic variables u, v, η are all O(1), which is optimal

for the posit number system. The sum of the tendencies is approximately 4 orders or

magnitude smaller, but still sufficiently represented by the 16bit number systems (except

for 16bit posits without exponent bits, which likely explains their poor performance). We

conclude that especially the sum of the tendencies and the diffusive terms (Biharmonic

diffusion and bottom friction) deserve attention when further optimizing the model code

to avoid intermediate results that are poorly representable by 16bit number formats.

Departure points that were calculated by the semi-Lagrangian advection scheme in its
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4.2. Results

non-dimensional and relative coordinate formulation (see Appendix A.2) are well centred

around 1, supporting the this formulation for low precision numbers. The momentum

advection and Coriolis terms are hidden behind the histogram of the pressure gradient

term, pointing towards the dominance of the geostrophic balance in the shallow water

model.
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Figure 4.5: Climatological mean circulation as indicated by the mean sea surface height
simulated by the shallow water model. (a) Reference mean field computed with double
precision floats; (b–f) difference to the reference. (b) half precision floats; (c) double
precision floats plus discretisation error; (d) 16bit posits with 2 exponent bits; (e) 16bit
posits with 1 exponent bit and (f) 16bit posits without exponent bits. The difference to
the reference (b–f) - (a) is also indicated by a different colour map.
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Figure 4.6: Same as Fig. 4.5 but for climatological variability computed as standard
deviation from the mean. Note that (f) was scaled down by a factor of 1

3 to match the
colour range.
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4.2. Results

Figure 4.7: Histogram showing the numbers occurring in the shallow water model
simulation. (a) The decimal precision of Fig. 2.4a for comparison (b) Numbers subject
to rounding errors in various parts of the model integration: u, v, η are the prognostic
variables, du, dv, dη are the sum of the tendencies including the time step. Various
other terms as indicated in the legend. Departure points are computed by the semi-
Lagrangian advection scheme in the non-dimensional relative coordinate formulation.
The momentum advection and Coriolis term histogram is hidden behind the pressure
gradient term histogram.
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5 Discussion and Conclusion
Using a software emulator we have tested posit arithmetic for weather and climate

simulations. The attractor of the Lorenz 1963 model, a chaotic but simplistic model of

atmospheric convection, is considerably improved using 16bit posits with one exponent

bit when compared to 16bit half precision floats. Half precision floats can be used to

perform forecasts with the shallow water model, a two-dimensional fluid circulation

model that represents either atmospheric or oceanic flows. However, 16bit posits with 1

or 2 exponents clearly outperform floats and appear very promising for application in

high performance computing for Earth System modelling. Especially 16bit posits with

2 exponent bits, that have a wide dynamic range of 32 orders of magnitude, are likely

to be widely applicable. Running computationally very demanding algorithms at 16 bit

could greatly reduce the wall-clock time for weather and climate simulations on future

high performance computing architecture.

The numerical discretisation that was used in this paper, with a fully-explicit time

stepping scheme and 2nd order centred finite differences, is common to solve the equations

of motion in fluid dynamics. However, various different methods of discretisation exist,

including spectral methods, finite element/volume and implicit time stepping. The

requirements on reduced precision will differ for the different algorithms and some

methods may be more sensitive to rounding errors compared to the techniques that were

studied in this paper. However, there is no prior reason why floats should be superior

to posits in these cases and the smaller rounding errors of 16bit posits compared to

half precision floats in our applications suggest that posits are very competitive. In

contrast, the wider dynamic range of posits with 1 or 2 exponent bits compared to

half precision floats will facilitate the application in more complex numerical models

since it will become difficult to reduce the dynamic range of all intermediate operations

for complex applications. While floating point arithmetic is then prone to overflows or

underflows, posit arithmetic will be able to tolerate very small and very large numbers,

although decimal precision is decreasing away from 1 for posits.

We do not show results for the bfloat16 floating point format in this paper as rounding

errors destroy the dynamics of the shallow water model. Due to the 8 exponent bits

the dynamic range of bfloat16 (10−40 to 1038) remains the same as for single precision

simulations. However, the small number of 7 fraction bits in this format causes rounding

errors that inhibit the time evolution of the model.

In this paper, we perform model forecasts with a perfect model. Any form of model
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5. Discussion and Conclusion

error is ignored, as the double precision reference is exactly the same model as its

reduced precision counterparts. Any form of initial condition error is also ignored. Only

discretisation errors are estimated by changing the advection scheme to a simpler non-

energy conserving form and by using a third-order instead of a fourth-order Runge-Kutta

method. Here, we are likely underestimating the discretisation error of real models which

also arises from the limited accuracy of spatial discretisation schemes.

This is not a realistic set-up for weather or climate models. Real models include many

other sources of forecast error (see section 1) and it is likely that the contributions of

rounding errors from 16bit arithmetic would be dwarfed by errors in initial conditions or

discretisation errors in many applications. As the forecast error with 16bit posits (1 or 2

exponent bits) are still considerably lower than the discretisation error, this suggest that

simulations with posit arithmetic of even less than 16 bit may be feasible. However, as

8bit numbers are very likely unsuitable for applications in weather and climate models,

we propose 16bit posit with 2 exponent bits as a format that would likely meet the

requirements of many algorithms used in weather and climate models. Together with a

32bit posit format with 2 exponent bits (to match the dynamic range of single precision

floats), a posit processor based on these two formats could greatly support the transition

of models that are rewritten to use less than 32 bits to represent real numbers. We believe

that high performance computing for Earth System modelling would benefit greatly from

a processor that would support both 16 and 32bit posit formats with 2 exponent bits.
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6 Outlook
In the following projects for future work are discussed. Preferences and expected time

investments are discussed in the individual subsections.

6.1 Hardware emulation of posits with FPGAs

Section 3 and 4 are entirely based on the software emulation of posits via the Julia-based

emulator. Software emulation provides a precise estimate of the numerical precision that

can be expected in a simulation. Emulating posit arithmetic in software comes with

the advantage that the same model code can be used with only small adjustments to

specify the desired number system. The shallow water model here can be executed on a

conventional CPU with either floating-point arithmetic or posit arithmetic at various

configurations by changing a single flag in the model parameters. This is a convenient

approach to test the effect of different binary number formats on metrics like forecast

accuracy or mean state. However, this approach comes with the disadvantage that

every number system that is not supported by the hardware runs at drastically reduced

speed. The Julia-based emulator for 16bit posits is approximately 150x slower than 64bit

double precision floats and 300x slower than 32bit single precision floats (which are both

supported by the CPU). We can therefore only assume that 16bit posits will be faster than

32bit single precision floats, but we cannot provide any evidence for this. The assumption

is justified, as 16bit arithmetics require less data to be transferred on hardware. The

microprocessor architecture is simplified for posits compared to floats [Chaurasiya et al.,

2018; Chen et al., 2018; Glaser et al., 2017; van Dam, 2018], which suggests reduced area

microprocessors and lower energy consumption. For posits, many arithmetic operations

can be performed at reduced clock cycles, which provides further potential to an increased

speed of posit arithmetic compared to floating-point arithmetic. Unfortunately, no posit

processor (also called posit numerical unit, PNU) with a comparable performance exists

yet, as most PNUs are currently based on field-programmable gate arrays (FPGA). An

FPGA is a device that serves as an integrated circuit which can be modified by the user

after manufacturing. A hardware specific programming language allows to programme

the desired circuits into hardware, which can serve as a microprocessor prototype. FPGAs

are very versatile but in general do not match the speed of a CPU, unless very specific

algorithms are entirely moved onto an FPGA. Nevertheless, a PNU simulated by an

FPGA could serve as a great testing environment for posit arithmetics. This form
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6.2. Increasing model complexity and parallelization

of hardware acceleration would provide more experience with the details of hardware

supported posit arithmetics and could also yield insights into quires (see section A.3).

An FPGA PNU could support the fusion of certain arithmetic operations, such that

their impact on the model fidelity can be investigated. It is not clear yet which set of

operations can be fused into a single quire, but for more complicated combinations of

operations also a two-step quire computation could be feasible.

This research project is in collaboration with the groups of Zaid Al-Ars and Peter

Hofstee at TU Delft and currently in the planning phase. We are going to provide the

software and Delft is going to work on the hardware. Therefore, computer scientists with

expertise in FPGAs and processor design are going to implement the performance crucial

parts of the algorithms into hardware and we will work on the algorithm that is best

suited to be implemented on an FPGA. Collaborators at Delft have already implemented

posit arithmetic onto FPGAs for matrix-matrix multiplies, with promising results [Chen

et al., 2018; van Dam, 2018]. Currently, the shallow water model is formulated with

element-wise matrix-matrix operations, but large parts could also be written as sparse

matrix-vector multiplications. The exact algorithm will be developed in collaboration

with Delft to allow an efficient posit hardware emulator. This project is expected to be

less time consuming from our side, and will likely be a Master’s thesis for a student at

Delft.

6.2 Increasing model complexity and parallelization

The following project aims to increase the complexity of the circulation model to test

posit arithmetic in a more realistic weather or climate model application. This can

either be conducted by (i) starting with the shallow water model presented in section 4

and subsequently increase the model’s complexity by adding features, or (ii) using an

already existing global atmospheric model that ideally is written in the Julia language to

facilitate the transition of the posit software emulator.

A layered primitive equation model

The 3D Navier-Stokes equations describe the temporal evolution of the atmosphere and

ocean. However, valid approximations for atmospheric and oceanic circulation simplify

this set of equations into layered 2D primitive equations with hydrostatic approximation

that are currently used for operational weather forecast. There are several competing

approaches to solve the 2D primitive equations on a sphere, such as finite differences, finite
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volume, finite element and discontinuous Galerkin as well as spectral methods, which

are combined with explicit or implicit time stepping schemes. Although the underlying

equations are the same, these various numerical techniques require different algorithms

and pose a different problem for computing architecture to compute the dynamical core

of a weather or climate model. The shallow water model presented in section 4 serves as

a simplified 2D finite difference dynamical cores of some state-of-the-art weather and

climate models. The approaches presented here to reformulate the discretised version

of the equations of motions to be executable with 16bit float or posit arithmetics are

therefore not necessarily transferable to other algorithms, despite the similarity of the

underlying equations.

To increase the complexity of the shallow water model it is therefore suggested to

add additional layers and to turn the shallow water equations into primitive equations.

From a physical point of view this includes processes like baroclinic instability, but also

an active tracer advection, which relaxes the assumption of a homogeneous density and

allows the tracers to influence the flow field by introducing pressure gradients from density

gradients (e.g. thermal wind). From a computational point of view, the coupling of layers

involves a vertical integral of quantities, which orders of magnitude could considerably

change from layer to layer. This would complicate the rescaling of the variables and it is

a priori not clear, whether these algorithms cause problems to be executed with 16bit

posit or float arithmetics. One advantage of the physical set-up of the here considered

shallow water model is, that the prognostic variables are all O(1). Regarding a 2-layer

stacked shallow water model the surface variables are again O(1), however, velocities in

the lower layer are usually O(10−2 ms−1) and the interface displacement O(102 m). An

interesting continuation of the present study would be therefore to explore the scaling

possibilities in such a system, where different variables occupy different ranges in the

provided range of representable numbers of the given number system. Ideally, each layer

could be scaled to shift every prognostic variable back into a range of O(1). However, due

to the non-linear terms, some of these scalings need to be undone when evaluating those

terms. Additionally, different scalings of different layers need to be carefully considered

when coupling the layers. Whether this can be done efficiently to yield a useful layered

primitive equation model in 16bit, that performs well in forecast metrics as presented

here for the shallow water model, remains an open question.

Converting the single layer shallow water model of section 4 into a 2-layer model is

a project with an estimated time investment of a few months. Converting the shallow

water equations into primitive equations is likely a similar time effort. These projects

will be explored in the near future but not at high priority.
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Distributed memory communication in 16bit with MPI

The shallow water model presented in section 4 runs on a single processor, i.e. we

have not parallelized its integration among several processors. In general, grid point

models are parallelized with a technique called domain decomposition. Instead of a single

processor computing the right-hand side of the equations for the entire domain, the

domain is decomposed into several subdomains, each computed by one processor. As

long as the domain is large enough, this would in general allow a strong scalability, i.e.

the runtime is inversely proportional to the number of processors used. However, the

subdomains are coupled such that the boundary conditions computed by one domain

have to be communicated with the neighbouring subdomains. This introduces overhead

and the scalability depends on many details of the implementation. The communication

of boundary conditions guarantees that information can propagate through the domain

as if a single processor was used for the entire domain. In fact, a domain decomposition

does not inhibit a bit-wise reproducibility. The communication of boundary conditions

is usually implemented via ghost points. Ghost points extend every subdomain by a

few surrounding grid points (depending on the stencil size), such that there is a small

overlap between neighbouring subdomains. At the beginning of each time step each

processor needs to copy the values at the boundaries into the arrays of the prognostic

variables owned by the neighbouring processes. This communication is done via MPI

(Message Passing Interface), a widely used standard to send data from one processor

with dedicated memory to another with independent memory allocated. MPI is therefore

used for the parallelization with a distributed memory paradigm, which is in contrast to

shared memory communication, usually done via the OpenMP protocol. In most global

high resolution weather and climate models, both MPI and OpenMP are used together

for optimal performance on large supercomputers.

MPI communication can add a considerable amount of time to the overall runtime of

a weather and climate model [Müller et al., 2019]. Based on the assumption that MPI

communication can be executed faster when less data is communicated it is therefore

an interesting project to investigate whether a model simulation can be performed

without decrease in fidelity when data is not communicated in 64bit numbers but in

16bit numbers (or even 8bit). The rounding therefore does not occur on the computation

of the right-hand side, but every processor only receives a reduced precision version of

the boundary conditions from the neighbouring subdomains. A great potential speed-up

can be expected, when weather or climate models are communication-bound, i.e. the

limiting factor of increasing the model performance is the communication between all
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processors. Reducing the data communicated could therefore facilitate a solution to this

limiting factor.

The shallow water model presented in section 4 is formulated in a way that the

boundary conditions are implemented as ghost points. On every time step, the respective

boundary conditions are therefore copied into the ghost points. The change towards a

domain decomposition is therefore minimal as this copying process needs to be extended

to allow for MPI communication, such that not one processor copies entries from one array

to the other but from one array on one process to another array owned by another process.

The Julia language supports the MPI standard via the MPI.jl wrapper. Unfortunately,

the MPI standard does not yet allow the communication to be performed in 16bit, but

we could emulate the effect of reduced precision communication via down and upcasting

just before (or after) the communication is performed. We assume that the precision

reduction potential is even greater as only the precision of prognostic variables is reduced

that are typically shared between processors. This reduction does not generate any

complication with intermediate results, that occur when reducing the precision for all

computations of the right-hand side. When the range of numbers of prognostic variables

that are communicated via MPI is limited, it might be even feasible to communicate 8bit

numbers, but this remains to be investigated.

As a first step a low-precision MPI-communication can be implemented in the shallow

water model presented in section 4, which is expected to be a minor project of a month.

As Julia is indeed a competitive alternative to established high performance computing

languages such as Fortran, it is worthwhile investigating whether Julia code can run

efficiently in parallel without much programming effort. As a second step the same

low-precision MPI-communication idea can be applied to global atmospheric models

such as the Integrated Forecast System (IFS), although this will likely rule out the

possibility for a posit-encoded communication, as no posit emulator is available for

Fortran. Furthermore, this is a bigger project, expected to take a few months.

6.3 Information theory approach to reduced precision

Developing a 16bit shallow water model therefore followed partly a try-and-error approach,

where various changes in the model code were tested to work with 16bit and eventually

rewritten or improved. This progress was largely supported by solving the equation

with SI units and with finite differences. Both provided the advantage that it was

comparably easy to estimate roughly the order of magnitude of intermediate calculations.

Consequently, bottlenecks with respect to 16bit arithmetics could be identified and
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improved. Weather and climate models of higher complexity, especially in terms of their

discretisation methods, likely complicate this approach. Identifying precision bottlenecks

might become the limiting factor of low precision model development with increasing

model complexity. A systematic diagnostic to automate the identification of precision-

crucial parts is needed. Based on such a diagnostic, necessary precision levels for various

calculations could be identified and in general a more flexible potentially heterogeneous

precision design suggested.

Research based on information theory approaches to reduced precision [Jeffress et al.,

2017] could provide diagnostics for the bit-wise information content of variables. Ideally,

such a diagnostic could estimate the necessary precision for algorithms and reduce the use

of a time-consuming try-and-error approach. These diagnostic could help to identify the

bottlenecks in the model code towards 16bit in more complex models, and also assess how

much precision an algorithm requires – solely based on a single model run, with output

from various prognostic and diagnostic variables. For dynamical core development this

information theory approach, however, could be limited, as illustrated in the following

example: Mathematically, the variables x = (a+ b) + c and y = a+ (b+ c) are identical,

however, with finite precision arithmetics the computation of (a+b) introduces a rounding

error and worst case an overflow, such that x and y can not expected to be identical.

Estimating the bit-wise information content based on x therefore might be misleading,

as an intermediate computation might require a higher precision or a larger dynamic

range than x itself. Although promising for data storage, this illustrated issue might

limit information theory approaches to identify reduced precision potential for dynamical

cores of weather and climate models. It is therefore suggested to start this project with

an observational data set and investigate the bit-wise information content of a given

variable to predict another variable at another location. This approach can yield insights

in the information content of geophysical data and hopefully identifies bits that do not

contain any real information. In general we expect the information content to change

depending on dominant time scale and the instabilities in the flow field, but this remains

to be investigated. Preliminary work was able to reproduce the study by Jeffress et al.

[2017], such that the next step would be to extend their methods for datasets of higher

dimensionality. The project is assumed to require a time investment of a few months for

major results.
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Appendix

A.1 A 16bit shallow water model

The shallow water equations are discretised on the (x, y)-plane over the rectangular

domain Lx × Ly. We associate x with the zonal and y with the meridional direction.

The domain is centred at 30°N and the beta-plane approximation Vallis [2006] is used to

linearize the Coriolis parameter which varies linearly from 7.27×10−5 s−1 at the southern

boundary to 9.25 × 10−5 s−1 at the northern boundary. The boundary conditions are

periodic in zonal direction and partial slip at the northern and southern boundary. The

layer thickness is h = η +H(x), with

H(x) = H0 −H1 exp
(
−H−2

σ (x− Lx
2 )2

)
(A.1)

being the undisturbed depth, representing a mountain ridge at x = Lx
2 spanning from the

southern to the northern boundary. The standard depth is H0 = 500 m. The ridge has a

height of H1 = 50 m. The characteristic width of the ridge is Hσ = 300 km. The time

step ∆t = 282 s is chosen to resolve surface gravity waves, travelling at maximum phase

speed
√
gH0 with CFL number being 1 and gravitational acceleration g = 10 ms−1. The

wind stress forcing F = (Fx, 0) is constant in time, acts only on the zonal momentum

budget

Fx =
F0

ρh
cos
(
π
(
yLy

−1 − 1
))2

(A.2)

and vanishes at the boundaries. The water density is ρ = 1000 kg m−3 and F0 = 0.12 Pa.

The dissipation term D is the sum

D = −ru− ν∇4u (A.3)

of a linear bottom drag with timescale r−1 = 300 days ≈ 2.6× 107 s Arbic & Scott [2008]

and a biharmonic diffusion with viscosity coefficient ν ≈ 1.33 × 1011 m4 s−1 Griffies &

Hallberg [2000].

16bit formulation To avoid division and subsequent multiplication with large numbers

throughout the numerical model integration, we reformulate the shallow water equations
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(Eq. 4.1), such that every substep of the Runge-Kutta time scheme reads as

un+1 = un +RKu

(
−(un · ∇̃)un − f̃ ẑ× un − g∇̃ηn + D̃ + F̃

)
(A.4a)

ηn+1 = ηn +RKη

(
−∇̃ · (uh)n

)
(A.4b)

with RKu, RKη being the Runge-Kutta coefficients times ∆t
∆ ; the rescaled Coriolis

parameter is f̃ = ∆f ; and the rescaled wind stress forcing F̃ = ∆F, all precomputed at

high precision in the model initialisation. The rescaled dissipation term F̃ is

D̃ = −r̃u− ν̃∇̃4u (A.5)

with r̃ = r∆ ≈ 0.0008 ms−1, and ν̃ = ν∆−3 ≈ 0.16 ms−1. Computing the term D̃ instead

of D is required to avoid arithmetic under and overflow with floats or huge rounding

errors with posit arithmetic.

The following time-split approach is in this study only used for the simulations of Fig.

4.2 and 4.3, but we want to emphasize the importance of time-split approaches. They

can be important to increase the size of the tendencies, to decrease the rounding error.

Instead of solving Eq. A.4 fully explicit with the same time step for each term, we can

split the time steps for various terms depending on their numerical stability Shchepetkin

& McWilliams [2005]. Fast gravity waves should be resolved, which requires the pressure

gradient term and the continuity equation to be solved at the time step ∆t. The diffusive

terms D, i.e. biharmonic diffusion and bottom friction, vary slower in time and do not

require such a short time step for stability. Therefore they can be solved with a larger

time step. Motivated by widely applied ocean models like NEMO [Madec, 2016] and

ROMS [Shchepetkin & McWilliams, 2005], a possible approach is to solve the diffusive

terms similar to the semi-implicit Euler method, which means that only after every mth

time step diffusion will be evaluated with the current state of the prognostic variables

un+1
∗ , adding the diffusive terms then results in an updated prognostic state un+1. We

first step the non-diffusive equations forward m time steps with ∆t, such that Eq. A.4a

simplifies to

un+1
∗ = un +RKu

(
−(un · ∇̃)un − f̃ ẑ× un − g∇̃ηn + F̃

)
(A.6)
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After every mth time step we solve

un+1 = un+1
∗ +

∆tdiff

∆

(
−r̃un+1

∗ − ν̃∇̃4un+1
∗

)
(A.7)

with ∆tdiff = m∆t being the enlarged time step for diffusive terms. We use m = 5

for our physical setting, however, re-tuning might be necessary for different physical

parameter values. A semi-implicit scheme for the diffusive terms comes with the advantage

of decreased runtime, due to fewer evaluations of these terms. With respect to 16bit

arithmetics, a semi-implicit scheme increases the size of the diffusive tendencies by a factor

of m to 6m (the smallest Runge-Kutta coefficient is 1/6 for the fourth order scheme).

As the diffusive tendencies are several orders of magnitude smaller than the prognostic

variables (Fig. 4.7), this is advantageous to avoid rounding errors (see Appendix A.3 for

a further discussion).

A.2 A semi-Lagrangian advection scheme for 16bit

The semi-Lagrangian advection scheme is based on the idea to solve the advection

equation with respect to its Lagrangian formulation [Diamantakis, 2013; Smolarkiewicz

& Pudykiewicz, 1992]. In the absence of sources and sinks, the Lagrangian point-of-view

states that the tracer concentration q does not change following its trajectory. The

concentration q at a given departure point xd is therefore the same as the concentration

at the arrival point xa later, which is reached by integrating the flow field over time along

the trajectory of infinitesimal arrival points

xa = xd +

∫ t+∆t

t
u(xa, t) dt (A.8)

For a turbulent flow the trajectories of a given set of departure points cross and

therefore complicate the geometry of the underlying grid considerably. To avoid a

change in the grid geometry, we set the arrival points to be identical to the centre

points of the Arakawa C-grid of the discretised shallow water equations. The departure

points however, will in general not coincide with that same grid, and we make use of

interpolation to find the tracer concentration at arbitrary departure points. Hence, the

semi-Lagrangian advection scheme can be split into two parts, (i) find for every arrival

point the corresponding departure point and (ii) interpolate the tracer concentration

onto the coordinate of the departure point (which is going to be the same concentration
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at the arrival point). A discrete form of Eq. A.8 is

xd = xa − u(xa, t+ ∆tadv)∆tadv (A.9)

where we used the velocity u at the arrival point and at the arrival time. The time

step is denoted as ∆tadv as it is in general different from the time step ∆t that is used

to integrate the shallow water equations. The semi-Lagrangian advection scheme is

unconditionally stable and therefore allows for very large time steps. Large time steps

are desired as (i) the computational cost is reduced and (ii) the lower total number of

interpolations reduces the numerical tracer diffusion. We can increase the accuracy with

an iterative method that uses several steps with interpolations of the velocity field onto

intermediate points of the trajectory. In fact, we use a two-step method that can, with a

mid-point xm, be written as

xm = xa − u(xa, t)
∆tadv

2
(A.10a)

xd = xa − u(xm, t−
∆tadv

2
)∆tadv (A.10b)

For very long time steps ∆tadv it is crucial to have an accurate estimate of the departure

point, as a rapidly changing turbulent flow field can otherwise lead to widely deviated

departure points. Please note, that also an interpolation of the velocity u onto the arrival

point (or intermediate points for the iterative method) is necessary due to the staggered

Arakawa C-grid. This interpolation is done bilinearly, as discussed in the following for

the interpolation of the tracer concentration.

Once the departure point xd is found, a bilinear interpolation of the surrounding grid

points onto the departure point is performed. In the unit square we define the tracer

concentrations q(x, y) with x, y ∈ [0, 1]× [0, 1] of the corner points as q00 = q(0, 0), q01 =

q(0, 1), etc. The bilinear interpolation follows then as

q(x, y) = q00(1− x)(1− y) + q10x(1− y) + q01(1− x)y + q11xy (A.11)

such that for a given departure point xd we have to deduce the relative coordinates x, y

in the grid cell surrounded by the four closest tracer concentration nodes. This procedure

is simplified in our case of an equidistant grid, but can be generalized to arbitrary grids.

16bit formulation We now aim to rewrite the semi-Lagrangian advection scheme

to avoid computations that are problematic with 16bit arithmetics. For geophysical
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simulations the departure point can be O(107 m) or larger when computed in meters,

which is beyond the range of representable numbers in half precision float arithmetic. To

avoid this, we use instead a non-dimensional coordinate x̃ = x∆−1 to transform Eq. A.9

into

x̃d = x̃a − u(xa, t+ ∆tadv)
∆tadv

∆
. (A.12)

Note that in practice, x̃a is a set of integers describing the array indices. For the simple

case of an equi-distant grid, this turns the coordinates x into indices x̃ that can be

readily used to access elements in the arrays of u and q. For a non-equidistant grid,

the grid spacing ∆ here could be replaced by a typical grid spacing scale, the exact

value is of minor importance. The advective time step ∆tadv is much larger than ∆t to

reduce numerical diffusion of the tracer due to a smaller number of interpolations. In

the simulations of Fig. 4.1 (∆ = 10 km) the rescaled time step is ∆tadv
∆ ≈ 2·104 s

104 m
= 2 sm−1

and therefore precomputed at higher precision in the model initialisation.

To use non-dimensional coordinates is sufficient for small grids. However, for a grid

with 1000 grid points in one direction also x̃d will approach values of O(1000). 16bit

arithmetics have a poor resolution at these orders of magnitude: A half precision float,

for example, can only represent the number 1000.5 between 1000.0 and 1001.0, which

introduces a big rounding error in the departure point computation. We therefore propose

to use relative non-dimensional coordinates instead. Here, the departure point coordinate

is computed relative to the arrival point. We therefore set x̃a = 0 in Eq. A.12

x̃d,rel = −u(xa, t+ ∆tadv)
∆tadv

∆
. (A.13)

and obtain an equation with all terms being O(1) and therefore representable with 16bit

arithmetics without problems. In practice, when converting the relative departure point

x̃d,rel to an array index, the problematic computation in Eq. A.12 is executed with

integer arithmetics, which can be performed without rounding errors. Once the bilinear

interpolation is computed with respect to the unit square, all terms in Eq. A.11 are also

representable with 16bit arithmetics, given a 16bit-conform range of values for the tracer

concentration q.

The iterative two-step departure point computation from Eq. A.10 reads in a non-
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dimensional relative coordinate formulation

x̃m,rel = −u(xa, t)
∆tadv

2∆
(A.14a)

xm = I(x̃m,rel) (A.14b)

x̃d,rel = −u(xm, t−
∆tadv

2
)
∆tadv

∆
(A.14c)

where the function I(x̃rel) converts a relative coordinate into the relative grid cell index

of the surrounding grid points (which can then be used with integer arithmetics) and

the relative coordinate within the respective grid cell, which is needed to compute the

bilinear interpolation of the velocity field onto the departure point. Note that I(x̃rel)

essentially separates a computation with reals into two parts. One that can be computed

with integers without rounding errors, and a calculation with reals, with a removed offset

to avoid rounding errors for floats or posits. For further technical details, the reader

is referred to the repository www.github.com/milankl/juls. This non-dimensional

relative coordinate formulation of the semi-Lagrangian advection scheme is implemented

to solve the tracer advection equation in the shallow water model and is shown to work

efficiently with 16bit arithmetics.

A.3 Perspectives for quires

Quires are an additional register on hardware to store intermediate results without

rounding. A fused operation like multiply-add can therefore be executed with the single

rounding error that applies when storing the final result. Let R(x) be a rounding function

that rounds a result of an operation to the nearest representable number in a given

number system. A dot product like r = ca + db is approximated with finite precision

arithmetic on a conventional CPU as

r = R(R(ca) + R(db)), (A.15)

that means after each arithmetic operation the rounding function is applied and introduces

a rounding error. In contrast, quires would remove the rounding of intermediate results.

The quire register is large enough to store the result of an arithmetic operation exactly

and no rounding is therefore applied. Storing the final result r means that it has to be

representable in the given number system, which requires rounding

r = R(ca+ db). (A.16)
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Although we do not use quires throughout the simulations, for completeness we want

to discuss computations that could greatly benefit from the use of quires. Summing the

tendencies of the right-hand side of Eq. 4.1a involves computations like

un+1 = un +RKu (Qhv + ∂xp+Dx + Fx) (A.17)

where RKu is a constant that includes the Runge Kutta coefficient and the time step.

Qhv is the advection of potential vorticity, ∂xp is the gradient of the Bernoulli potential,

Dx is the u-component of bottom friction and diffusion and Fx is the wind forcing. It is a

priori not clear which of the terms un, Qhv, ∂xp,Dx or Fx dominate the sum. Physically

speaking, the shallow water model is often close to geostrophic balance, which means

that the Coriolis term (which is included in Qhv) and the pressure gradient term (which

is included in ∂xp) oppose each other. In general, however, the dominating balance will

vary in space and time and therefore it is only clear at runtime what the preferred order

of addition is, which is crucial to reduce the rounding error. Quires may allow to perform

the sum over different terms to calculate the right-hand side of the equations with a

single rounding error when the final result of the new velocity value is stored.
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