
Towards weather and climate models in 16-bit arithmetic

Milan Klöwer

Atmospheric, Oceanic and Planetary Physics

University of Oxford

supervised by

Prof. Tim Palmer, University of Oxford

Dr. Peter Düben, European Centre for Medium-Range Weather Forecasts

A report submitted for the confirmation of status as DPhil candidate.

Oxford, April 2020

Word count
352 Abstract

933 Introduction

2484 Section 2

2923 Section 3

2618 Section 4

808 Section 5

686 Conclusions

10,804 Total

Abstract

Numerical models of weather and climate are a key development of the last

decades for weather forecasting and climate predictions and of great impor-

tance to society and economy. They rely on computations of real numbers that

are represented with 64-bit floating-point numbers on large supercomputers.

Given the flattening of Moore’s law, we are investigating the potential of 16-bit

arithmetics, which are increasingly supported by specialised hardware due

to the boom of deep learning applications. Alternatives to the dominating

floating-point numbers are compared in this study with software emulators

in low and medium complexity models. The results suggest that posit num-

bers are a generally preferable number format over floats, which is related to

higher entropy encoding in our applications, which reduces the total rounding

error at the same bit length. A self-organizing number format Sonum16 is con-
structed with the lowest rounding errors of all available 16-bit formats due to

its maximised entropy, but training and look-up tables are required. Given the

comparison of decimal precision we identify the key requirements of a num-

ber format to reduce rounding errors. Motivated by the successful stochastic

approaches in weather forecasting, a exact-in-expectation stochastic rounding

mode was found largely superior to round-to-nearest in our applications by

reducing rounding errors and improving regime dynamics in chaotic systems.

In general, we show that the transition to 16-bit arithmetic is challenging. How-

ever, we provide several mitigation methods that make algorithms resilient

against increased rounding errors while retaining the performance potential

on 16-bit supporting hardware. Mixing 16-bit arithmetics for the majority of

calculations with 32 bit for critically error-prone calculations was shown to

be a promising approach that can be implemented on present-day hardware.

Reduced precision communication between processors with 16 or even 8-bit

numbers was found to introduce negligible errors, providing a performance

potential for weather and climate models that are communication bandwidth

limited. To systematically identify algorithmic changes to reduce rounding

errors, we developed an analysis number format sherlogs, which creates bitpat-
tern histograms, estimates the algorithmic information entropy and identifies

problematic lines of code of complex algorithms to aid the transition towards

16-bit arithmetic in weather and climate models.

Contents
Contents iii
1 Introduction 1
2 16-bit number formats 4
2.1 Integers and fixed-point numbers . 4

2.2 Floating-point numbers . 5

2.3 Posit numbers . 5

2.4 Logarithmic fixed-point numbers . 9

2.5 Decimal precision . 10

2.6 Stochastic rounding . 11

2.7 A type-flexible programming paradigm . 13

3 Impact on the physics 15
3.1 Error growth . 15

3.2 Mean and variability . 18

3.3 Geostrophy . 18

3.4 Gravity waves . 21

3.5 Mixed precision arithmetic in the shallow water model 22

Inaccurate rounding: Logarithmic fixed-point numbers 23

3.6 Reduced precision communication . 25

3.7 Stochastic rounding . 27

4 Sonums 30
4.1 Numbers that learn from data . 30

4.2 Maximum entropy training . 31

4.3 Minimising the decimal error . 34

4.4 Sonums in Lorenz 1996 . 37

5 Sherlogs 40
5.1 Logging arithmetic results . 40

5.2 Algorithmic information entropy . 41

6 Conclusions 43

iii

CONTENTS

7 Thesis outline 45
7.1 Outline . 45

7.2 Timeline . 48

7.3 Transferable skills . 48

Appendix 49
A.1 Open-source software developments . 49

SoftPosit.jl . 49

StochasticRounding.jl . 49

ShallowWaters.jl . 49

Sherlogs.jl . 50

Sonums.jl . 50

Float8s.jl . 51

LogFixPoint16s.jl . 51

Lorenz96.jl . 51

Lorenz63.jl . 52

Jenks.jl . 52

Acknowledgements 53
References 54

iv

1 Introduction
Reliable weather forecasts and climate predictions are heavily dependent on the world’s

largest supercomputers and their performance increase of the last decades following

Moore’s law. Due to the flattening of processor clock rates, innovations are needed

to provide weather and climate models with the required computational performance

towards increased reliability of predictions. The Earth’s climate system remains very

difficult to predict even with the computational resources available, due to its complexity

and non-linear dynamics that couple all features from the smallest time and length-scales

to the largest. The forecast error of a weather forecast model has several origins [Palmer,

2015, 2012]: (i) Initial and boundary condition errors, which result from observations,

data assimilation and external factors; (ii) model error, i.e. the difference between the

mathematical model and the real world; (iii) discretisation error resulting from a finite

spatial and temporal resolution of the discretised equations and (iv) rounding errors with

finite precision arithmetic. The forecast error is largely dominated by (i-iii), depending on

the forecast variable and the forecast lead time. In contrast, rounding errors are usually

negligible when the IEEE-754 standard on 64-bit double precision floating-point numbers

(Float64) is used, which is the default number format for the majority of operational

weather forecasts and in climate models.

Reduced precision arithmetics allow for hardware-acceleration and lower energy

consumptions due to smaller circuit sizes and an increased potential for vectorization

[Jouppi et al., 2017]. Limitations on runtime and energy consumption mean that an
increased performance of simulations can be traded for more accurate predictions of

weather and climate by increasing model resolution and complexity. The Integrated

Forecast System at the European Centre for Medium-Range Weather Forecasts can

be accelerated by 40% when 32-bit single precision (Float32) is used for the majority

of calculations, with no impact on the forecast skill [Hatfield et al., 2020; Váňa et al.,
2017]. MeteoSwiss achieved a similar performance increase with their weather forecast

model COSMO [Rüdisühli et al., 2013] by changing from Float64 to Float32. For the
European ocean model NEMO mixing 32 and 64 bit calculations is a promising approach

to keep accuracy-critical parts in high precision while increasing performance in others

[Tintó Prims et al., 2019].
Most of the 64 bits in Float64 do not contain information in simplistic chaotic models

[Jeffress et al., 2017]. Using less than 32-bit precision for algorithms in weather forecast
models is investigated [Düben, 2018; Düben et al., 2014; Thornes et al., 2017], and

1

1. INTRODUCTION

especially mixed-precision approaches with 16-bit half precision floats (Float16) are

promising [Hatfield et al., 2019]. Most research on reduced precision modelling for
weather and climate applications makes use of software emulators Dawson & Düben

[2017] that provide other arithmetics than the widely hardware-supported Float32 and

Float64. Software emulators are often an order of magnitude slower than a hardware-

implementation onto an arithmetic unit on a processor. However, software emulation

allows a scientific evaluation of the use of reduced numerical precision and various

alternative number formats can be tested without the need of special hardware (such

as FPGAs, Russell et al. [2017]). Existing models of weather and climate can therefore
be executed with arbitrary number formats and the impact of rounding errors can be

investigated.

Deep learning applications receive a strongly increasing attention recently, which influ-

ences hardware development towards lower numerical precision in exchange for higher

computational performance. More reduced precision number formats, especially at the

length of 16 bit are therefore becoming supported on specialised hardware. Graphic

processing units started to implement Float16 for increased performance [Markidis et al.,
2018]. Google’s tensor processing units (TPU, Jouppi et al. [2017, 2018]) support the
16b-it BFloat16 format, a truncated version of Float32, as deep learning was found to

be successful despite the degradation in precision with 16-bit arithmetic [Burgess et al.,
2019; Kalamkar et al., 2019]. Stochastic rounding is proposed as an alternative rounding
mode that was found to improve deep learning with low precision number formats

substantially [Gupta et al., 2015]. Despite the success of stochastic parametrizations in
weather forecasting [Palmer, 2019], only stochastic bit flips were investigated previously

[Düben et al., 2014].
The design of floating-point numbers was recently criticised, which led to the develop-

ment posit numbers, an alternative to floats [Gustafson, 2017] with more accurate results

in some algorithms of linear algebra and machine learning [Gustafson & Yonemoto,

2017; Langroudi et al., 2019]. Posits were previously only tested by Klöwer et al. [2019]
with a software emulator in shallow water models, but further analysis is needed to

thoroughly understand their impact on the simulated physics in weather and climate

models. Some research on hardware implementations for posits have been carried out

recently [Chaurasiya et al., 2018; Chen et al., 2018; Glaser et al., 2017; van Dam et al.,
2019], but standardized posit hardware is not yet available. This study will therefore be

based on software emulators to compare posits to other available number formats.

Reduced precision modelling is closely related to data compression which aims

to archive data fast, without losing valuable information and, ideally, consuming the

2

1. INTRODUCTION

smallest storage space possible. This usually poses a dilemma in which not all of

the three requirements size, precision, and speed can be satisfied [Silver & Zender,

2017]. However, the encoding of real numbers in bits has to map easily onto the

circuits of the arithmetic units in a processor to guarantee fast calculations to meet the

performance requirements for reduced precision modelling. Information entropy is

central to data compression [MacKay, 2003], and important to identify meaningless bits

in uncompressed climate data [Jeffress et al., 2017] which can be removed for successful
compression [Zender, 2016]. Information theory is not yet a central perspective for

reduced precision modelling, which will be partly addressed in this study.

The study is structured as follows: Section 2 describes various 16-bit number formats,

rounding modes, decimal precision and implementations of user-defined number types

in the Julia language. The impact of various 16-bit formats on the physics in simulations

of the shallow water model are analysed in section 3. Section 4 introduces the newly

developed self-organizing numbers sonums. Sherlogs, a new analysis number format is

outlined in section 5 to estimate the algorithmic information entropy. We summarize

the results in the conclusions in section 6 and provide a thesis outline in section 7. The

appendix A.1 lists the open-source developments that have been made as key elements

to reproduce the outcomes of this study.

3

2 16-bit number formats
2.1 Integers and fixed-point numbers
The simplest way to represent a real number in bits is the integer format. An n-bit signed

integer starts with a sign bit followed by a sequence of integer bits, that are decoded as

a sum of powers of two with exponents 0, 1, ..., n− 2. An positive integer x with signbit

b0 = 0 is therefore decoded in bits b1, ..., bn−2 as

x =

n−2∑
i=1

2i−1bi (2.1)

To avoid multiple representations of zero and to simplify hardware implementations,

negative integers, with a sign bit (red) being 1, are decoded with two’s complement

interpretation (denoted with an underscore) by flipping all other bits and adding 1 [Choo

et al., 2003]. For example in the 4-bit signed integer format (Int4), 1110Int4 = 1010_ = −2.

The largest representable integer for a format with n bits is therefore 2n−1 − 1 and the

spacing between representable integers is always 1.

Fixed-point numbers extend the integer format with nf fraction bits to ni signed

integer bits to decode an additional sum of powers of two with negative exponents

−1,−2, ...,−nf . A positive fixed-point number is

x =

ni−2∑
i=1

2i−1bi +

nf∑
i=1

2−ibni−2+i (2.2)

Every additional fraction bit reduces the number of integer bits, for example Q6.10 is the

16-bit fixed-point format with 6 signed integer bits and 10 fraction bits.

Flexibility regarding the dynamic range can therefore be achieved with integer arith-

metic if fixed-point numbers are used [Russell et al., 2017]. Unfortunately, we did not
achieve convincing results with integer arithmetic for the applications in this study, as

rescaling of the equations is desired to place many arithmetic calculations near the

largest representable number [Klöwer et al., 2019]. However, any result beyond will lead
to disastrous results, as integer overflow usually returns a negative value following a

wrap-around behaviour.

4

2.2. FLOATING-POINT NUMBERS

2.2 Floating-point numbers
The IEEE standard on floating-point arithmetic defines how floats encode a real number

x in terms of a sign, and several exponent and significant bits

x = (−1)sign bit · 2e−bias · (1 + f) (2.3)

The exponent bits e are interpreted as unsigned integers, such that e − bias converts
them effectively to signed integers. The significant bits fi define the significand as

f =
∑nf

i=1 fi2
−i
such that (1 + f) is in the bounds [1, 2). An 8-bit float encodes a real

number with a sign bit (red), ne = 3 exponent bits (blue) and nf = 4 fraction bits (black)

as illustrated in the following example

3.14 ≈ 01001001Float8 = (−1)0 · 24−bias · (1 + 2−1 + 2−4) = 3.125 (2.4)

with bias = 2ne−1 − 1 = 3. Exceptions to Eq. 2.3 occur for subnormal numbers, infinity

(Inf) and Not-a-Number (NaN) when all exponent bits are either zero (subnormals) or

one (Inf when f=0, or NaN else). 16-bit half-precision floating point numbers (Float16)

have 5 exponent bits and 10 significant bits. A truncated version of the Float32 format

(8 exponent bits, 23 significant bits) is BFloat16 with 8 exponent bits and 7 significant

bits. Characteristics of various formats are summarised in Table 2.1. A format with more

exponent bits has a wider dynamic range of representable numbers but lower precision,

as fewer bits are available for the significant. All floating-point formats have a fixed

number of significant bits. Consequently, they have a constant number of significant

digits throughout their range of representable numbers (subnormals excluded), which is

in contrast to posit numbers, which are introduced in the next section.

2.3 Posit numbers
Posit numbers arise from a projection of the real axis onto a circle (Fig. 2.1), with only

one bitpattern for zero and one for Not-a-Real (NaR, or complex infinity), which serves

as a replacement for Not-a-Number (NaN). The circle is split into regimes, determined
by a constant useed, which always marks the north-west on the posit circle (Fig. 2.1b).

Regimes are defined by useed±1, useed±2, useed±3, etc. To encode these regimes into

bits, posit numbers extend floating-point arithmetic by introducing regime bits that are

responsible for the dynamic range of representable numbers. Instead of having a fixed

length, regime bits are defined as the sequence of identical bits after the sign bit, which

5

2.3. POSIT NUMBERS

Format bits exp bits minpos maxpos ε % NaR

Float64 64 11 5.0 · 10−324 1.8 · 10308 16.3 0.0
Float32 32 8 1.0 · 10−45 3.4 · 1038 7.6 0.4
Float16 16 5 6.0 · 10−8 65504 3.7 3.1
BFloat16 16 8 9.2 · 10−41 3.4 · 1038 2.8 0.4
Float8 8 3 1.5 · 10−2 15.5 1.9 12.5

Posit32 32 2 7.5 · 10−37 7.5 · 1037 8.8 0.0
Posit(16,1) 16 1 3.7 · 10−9 3.7 · 109 4.3 0.0
Posit(16,2) 16 2 1.4 · 10−17 1.4 · 1017 4.0 0.0
Posit(8,0) 8 0 1.5 · 10−2 64 2.2 0.4

Int16 16 0 1 32767 0.8 0
Q6.10 16 0 9.8 · 10−4 32.0 3.7 0

LogFixPoint16 16 15 5.4 · 10−20 1.8 · 1019 3.2 0.0
Approx14 14 13 5.4 · 10−20 9.1 · 1018 2.6 0.8

Table 2.1: Some characteristics of various number formats. minpos is the smallest
representable positive number, maxpos the largest. The machine precision ε, is the
decimal precision at 1. % NaR denotes the percentage of bit patterns that represent not
a number (NaN), infinity or not a real (NaR).

are eventually terminated by an opposite bit. The flexible length allows the significand

(or mantissa) to occupy more bits when less regime bits are needed, which is the case

for numbers around one. A resulting higher precision around one is traded against

a gradually lower precision for large or small numbers. A positive posit number p is

decoded as [Gustafson, 2017; Gustafson & Yonemoto, 2017; Klöwer et al., 2019] (negative
posit numbers are converted first to their two’s complement, see Eq. 2.7)

p = (−1)sign bit · useedk · 2e · (1 + f) (2.5)

where k is the number of regime bits. e is the integer represented by the exponent

bits and f is the fraction which is encoded in the fraction (or significant) bits. The base

useed = 22
es
is determined by the number of exponent bits es. More exponent bits

increase - by increasing useed - the dynamic range of representable numbers for the cost

of precision. The exponent bits themselves do not affect the dynamic range by changing

the value of 2e in Eq. 2.5. They fill gaps of powers of 2 spanned by useed = 4, 16, 256, ...

for es = 1, 2, 3, ..., and every posit number can be written as p = ±2n · (1 + f) with a

given integer n [Chen et al., 2018; Gustafson & Yonemoto, 2017]. We will use a notation
where Posit(n,es) defines the posit numbers with n bits including es exponent bits. A

6

2.3. POSIT NUMBERS

posit example is provided in the Posit(8,1)-system (i.e. useed = 4)

57 ≈ 01110111Posit(8,1) = (−1)0 · 42 · 21 · (1 + 2−1 + 2−2) = 56 (2.6)

The sign bit is given in red, regime bits in orange, the terminating regime bit in brown,

the exponent bit in blue and the fraction bits in black. The k-value is inferred from the

number of regime bits, that are counted as negative for the bits being 0, and positive,

but subtract 1, for the bits being 1. The exponent bits are interpreted as unsigned

integer and the fraction bits follow the IEEE floating-point standard for significant bits.

For negative numbers, i.e. the sign bit being 1, all other bits are first converted to their

two’s complement (Choo et al. [2003], denoted with an underscore subscript) by flipping
all bits and adding 1,

−0.28 ≈ 11011110Posit(8,1) = 10100010_

= (−1)1 · 4−1 · 20 · (1 + 2−3) = −0.28125.
(2.7)

After the conversion to the two’s complement, the bits are interpreted in the same way

as in Eq. 2.6.

Posits also come with a no overflow/no underflow-rounding mode: Where floats

overflow and return infinity when the exact result of an arithmetic operation is larger than

the largest representable number (maxpos), posit arithmetic returns maxpos instead,

and similarly for underflow where the smallest representable positive number (minpos)

is returned. This is motivated as rounding to infinity returns a result that is infinitely less

correct than maxpos, although often desired to indicate that an overflow occurred in

the simulation. Instead, it is proposed to perform overflow-like checks on the software

level to simplify exception handling on hardware [Gustafson, 2017]. Many functions are

simplified for posits, as only two exceptions cases have to be handled, zero and NaR.

Conversely, Float64 has more than 1015 bitpatterns reserved for NaN, but these only

make up < 0.05% of all available bit patterns. The percentage of redundant bitpatterns

for NaN increases for floats with fewer exponent bits (Table 2.1), and only poses a

noticeable issue for Float16 and Float8.

The posit number framework also highly recommends quires, an additional register
on hardware to store intermediate results. Dot-product operations are fused with quire

arithmetic and can therefore be executed with a single rounding error, which is only

applied when converting back to posits. The quire concept could also be applied to

floating-point arithmetic (fused multiply-add is available on some processors), but is

technically difficult to implement on hardware for a general dot-product as the required

7

2.3. POSIT NUMBERS

Posit(2,0)

a

Posit(4,1)

b

0

±∞
NaR

1/2
1/41/16-1
/1

6-1
/4

-1/2

-1

-2

-4

-16

1

2u se
ed
 =

 4

16

0100

0101

0110

01
11

0011

00100001

0
0

0
0

1
0

0
01001

1010

1011

1100

1101

1110

11
11

10
01

1010

1011

1100

1101

1110

1111

01

10

11

00
0

±∞
NaR

1-1

Figure 2.1: Two posit number formats obtained by projecting the real axis onto a circle.

(a) 2bit Posit(2,0) and (b) 4bit Posit(4,1). The bit patterns are marked on the outside

and the respective values on the inside of each circle. Bit patterns of negative numbers

(black) have to be converted to their two’s complement (colours) first (see text). At the

top of every circle is complex infinity (±∞) or NaR (Not-a-Real). After Gustafson [2017].

8

2.4. LOGARITHMIC FIXED-POINT NUMBERS

registers would need to be much larger in size. For fair comparison we do not take

quires into account in this study. The posit number format is explained in more detail in

Gustafson [2017]. In order to use posits on a conventional CPU we developed for the

Julia programming language [Bezanson et al., 2017] the posit emulator SoftPosit.jl [Klöwer
& Giordano, 2019], which is a wrapper for the C-based library SoftPosit [Leong, 2020].

The type-flexible programming paradigm, facilitated by the Julia language, is outlined in

2.7.

Figure 2.2: Decimal precision of various number formats. Dashed vertical lines indicate

the range of representable numbers for each format. Float64, Float32 and Posit32 are

beyond the axes limits.

2.4 Logarithmic fixed-point numbers
Fixed-point numbers have a limited range and for the applications in this study an

unsuitable distribution of decimal precision. However, logarithmic fixed-point numbers

are similar to floating-point numbers. A n-bit logarithmic fixed-point number is defined

as

x = (−1)sign bit · 2e (2.8)

where e is encoded as an (n − 1)-bit fixed-point number (Eq. 2.2). Consequently,

logarithmic fixed-point numbers are equally spaced in log-space and have a perfectly

flat decimal precision throughout the dynamic range of representable numbers (Fig.

2.2). We call the 16-bit logarithmic fixed-point numbers with 7 signed integer bits and

9

2.5. DECIMAL PRECISION

8 fraction bits LogFixPoint16. Approx14 is a proprietary number format developed by

Singular Computing, which is essentially a 14-bit logarithmic fixed-point numbers with 7

signed integer bits and 6 fraction bits.

Logarithmic number formats have the advantage that no rounding error is applied for

multiplication, as the addition of the exponents is exact with fixed-point numbers (as long

as no under or overflow occurs). Hence, multiplication with LogFixPoint16 and Approx14

is not just exact but also fast, due to implementation as integer addition. Conversely,

addition with logarithmic numbers is difficult. Adding two logarithmic numbers involves

the computation of a logarithm, which, however, for low precision numbers can be

implemented as a table look-up.

Both LogFixPoint16 and Approx14 come with a round-to-nearest rounding mode in

log2-space. We consider x1 = 20 = 1 and x2 = 21 = 2 as two representable numbers as

an example with x in between. With round-to-nearest (and tie to even) in linear-space all

numbers x larger equal 1.5 are round up and others round down. With round-to-nearest

in log2-space 2
1
2 =
√

2 = 1.414... is the log-midpoint as log2(
√

2) = 0.5. Consequently,

the numbers between
√

2 (inclusive) and 2 will be round up and only numbers between 1

and less than
√

2 will round down. Hence, the linear range of numbers that will be round

up is larger than those that will round down. This rounding is biased as the expectation

of rounded uniformly distributed values between 1 and 2 is not equal to the expectation

without rounding. Let roundlog2(x) be the round-to-nearest function in log2-space and x

be drawn N -times from a random uniform distribution U(1, 2), then

1

N

N∑
i

xi = 1.5 6= 1

N

N∑
i

roundlog2(xi) = 3−
√

2 = 1.586... (2.9)

We will investigate the effect of this round-to-nearest in log2-space in section 3.5.

2.5 Decimal precision
The decimal precision is defined as [Gustafson, 2017; Gustafson & Yonemoto, 2017]

decimal precision = − log10 | log10(
xrepr
xexact

)| (2.10)

where xexact is the exact result of an arithmetic operation and xrepr is the representable

number that xexact is rounded to, given a specified rounding mode. For the common

round-to-nearest rounding mode, the decimal precision approaches infinity when the

10

2.6. STOCHASTIC ROUNDING

exact result approaches the representable number and has a minimum in between two

representable numbers. This minimum defines the worst-case decimal precision, i.e.
the decimal precision when the rounding error is maximised. The worst-case decimal

precision is the number of decimal places that are at least correct after rounding.

Fig. 2.2 compares the worst-case decimal precision for various 16 and 8-bit floats and

posits, as well as 16-bit integers, the fixed-point format Q6.10 (6 integer bits, 10 fraction

bits) and logarithmic fixed-point numbers LogFixPoint16 and Approx14. Float16 has a

nearly constant decimal precision of almost 4 decimal places, which decreases for the

subnormal numbers towards the smallest representable numberminpos. 16-bit posits,

on the other hand, show an increased decimal precision for numbers around 1 and a

wider dynamic range, in exchange for less precision for numbers around 104 as well as

10−4. The machine precision ε (in analogy to the machine error, also known as machine

epsilon), defined as half the distance between 1 and the next representable number,

is given in terms of decimal precision and is summarised in Table 2.1 for the various

formats. Due to the no overflow/no underflow-rounding mode, the decimal precision is

slightly above zero outside the dynamic range.

The decimal precision of 16-bit integers is negative infinity for any number below

0.5 (round to 0) and maximised for the largest representable integer 215 − 1 = 32767.

Similar conclusions hold for the fixed-point format Q6.10, as the decimal precision is

shifted towards smaller numbers by a factor of
1
2 for each additional fraction bit.

2.6 Stochastic rounding
The default rounding mode for floats and posits is round-to-nearest tie-to-even. In this

rounding mode an exact result x is rounded to the nearest representable number xi.

In case x is half-way between two representable numbers, the result will be tied to the

even. A floating-point number xi is considered to be even, if its significand ends in a zero

bit. These special cases are therefore alternately round up or down, which removes a

bias that otherwise persists (see Eq. 2.9 for an example of biased rounding). Let x1 and

x2 be the closest two representable numbers to x and x1 ≤ x < x2 then

roundnearest(x) =


x1 if x− x1 < x2 − x,

x1 if x− x1 = x2 − x and x1 even,

x2 else .

(2.11)

For stochastic rounding, rounding of x down to a representable number x1 or up

11

2.6. STOCHASTIC ROUNDING

to x2 occurs at probabilities that are proportional to the distance between x and x1, x2,

respectively. Let δ be the distance between x1, x2, then

roundstoch(x) =

x1 with probability 1− δ−1(x− x1)

x2 with probability δ−1(x− x1).
(2.12)

This behaviour is illustrated in Fig. 2.3. In case that x is already identical with

a representable number no rounding is applied and the chance to obtain another

representable number is zero. For x being half way between two representable numbers,

the chance of round up or round down is 50%. The introduced absolute rounding error

for stochastic rounding is always at least as big as for round-to-nearest, and when

low-probability round away from nearest occurs, it can be up to ±δ, whereas for round-
to-nearest the error is bound by ± δ

2 . Although the average absolute rounding error is

therefore larger for stochastic rounding, the expected rounding error decreases towards

zero for repeated roundings

lim
N→∞

1

N

N∑
i

roundstoch(x) = x (2.13)

as follows by inserting Eq. 2.12. Stochastic rounding is therefore exact in expectation.

The stochastic rounding mode is implemented for Float16 and BFloat16. Software

emulations of both number formats rely on conversion to Float32, such that the exact

result (to the precision provided by Float32) is known before conversion back to 16 bit.

Instead of calculating the probabilities given in Eq. 2.12, we add a stochastic perturbation

ξ ∈ [− δ
2 ,

δ
2] to x before round-to-nearest. Let r be uniformly distributed in [0, 1] then Eq.

2.12 can then be rewritten as

roundstoch(x) =

roundnearest(x+ δ
2(r − x−x1

δ) if x1 = 2n and x− x1 < δ
4

roundnearest(x+ δ(r − 1
2)) else .

(2.14)

The special case only occurs for x being within δ
4 larger than a floating-point number

x1 = 2n, that means with zero significand. In this case the distance from x1 to the

previous float is only
δ
2 , which has to be accounted for.

12

2.7. A TYPE-FLEXIBLE PROGRAMMING PARADIGM

x is round to x2

Round nearest a

x1 x2 x3
0%

100%

x = x2 at 80%
x3 at 20% chance.

Stochastic rounding b

Figure 2.3: Stochastic rounding schematically. (a) For round to nearest, the number

x is round to the nearest representable number, which is x2 (orange) in the example.
(b) For stochastic rounding, x is round down at chance p, which is proportional to the
distance of the two closest representable numbers. In the example, x is round down at

80% chance, but round up at 20% chance.

2.7 A type-flexible programming paradigm
Julia’s programming paradigms of multiple-dispatch and type-stability facilitate the use
of arbitrary number formats without the need to rewrite an algorithm, while compiling

functions for specific types [Bezanson et al., 2017]. As this is an essential feature of Julia
and extensively made use of here, we briefly outline the benefits of Julia by computing

the harmonic sum
∑∞

i=1
1
i with various number types as an example. Analytically the

harmonic sum diverges, but with finite precision arithmetic several issues arise. With an

increasing sum the precision is eventually lower than required to represent the increment

of the next summand. The integer i as well as its inverse
1
i have to be representable in a

given number format, and are also subject to rounding errors.

Executing the function harmonic_sum for the first time with a type T as the first

argument, triggers Julia’s just-in-time compiler (Fig. 2.4). The function is type-stable,
as the types of all variables are declared and therefore known to the compiler. At

the same time Julia allows for type-flexibility, as itsmultiple-dispatchmeans that calling
harmonic_sum with another type T2 will result in a separately compiled function for T2.

We can therefore compute the harmonic sum with arbitrary number types, as long as

the zero-element zero(T); the one-element one(T); addition; division; conversion from

13

2.7. A TYPE-FLEXIBLE PROGRAMMING PARADIGM

1 function harmonic_sum(::Type{T},steps::Int=2000) where T
2
3 s = zero(T)
4 o = one(T)
5
6 for i in 1:steps
7
8 s_old = s
9 s += o/T(i)

10
11 if s == s_old # check for convergence
12 println(Float64(s),i)
13 break
14 end
15 end
16 end

Figure 2.4: A type-flexible harmonic sum function in the Julia language.

integer and conversion to float are defined for T.

1 julia> using SoftPosit
2 julia> using BFloat16s
3 julia> harmonic_sum(Float16)
4 (7.0859375, 513)
5
6 julia> harmonic_sum(BFloat16)
7 (5.0625, 65)
8
9 julia> harmonic_sum(Posit16)

10 (7.77734375, 1024)

Figure 2.5: Harmonic sum example use of the posit emulator SoftPosit.jl in the Julia shell.
Posit16 is the Posit(16,1) standard.

The harmonic sum converges after 513 elements when using Float16 (Fig. 2.5). The

precision of BFloat16 is so low that the sum already converges after 65 elements, as the

addition of the next term 1/66 is rounded back to 5.0625. We identify the addition of

small terms to prognostic variables of size O(1) as one of the major challenges with low

precision arithmetic, which is discussed in more detail in section 3.5. Using Posit(16,1),

the sum only converges after 1024 terms, due to the higher decimal precision of posits

between 1 and 10.

14

3 Impact on the physics
We investigate the impact that various 16-bit number formats have on the simulated

physics of different low and medium-complexity models. The Lorenz 1963 and the

shallow water model are introduced in Klöwer et al. [2019].

3.1 Error growth
Low precision number formats increase the rounding error, which grows over time in a

chaotic system. As long as the rounding error is masked by other errors, its contribution

to a degradation in forecast skill is negligible. We analyse the rounding error growth in

the shallow water system, by running simulations with various 16-bit number formats

and compare them to Float64.

The solution to the shallow water equations includes vigorous turbulence that dom-

inates a meandering zonal current. Using either float or posit arithmetic in 16 bit the

simulated fluid dynamics are very similar to a Float64 reference: As shown in a snapshot

of tracer concentration (Fig. 3.1) turbulent stirring and mixing can be well simulated

with posits. However, the Float16 simulation (Fig. 3.1d) deviates much faster than the

posit simulations (Fig. 3.1b and c) from the Float64 reference (Fig. 3.1a), presumably

due to the small scale instabilities visible in the snapshot as wavy filaments and fronts.

These instabilities are clearly triggered by Float16 arithmetics, but to a lower degree also

visible for posits. This provides a first evidence that the accumulated rounding errors

with posits are smaller than with floats. BFloat16 arithmetic is not able to simulate the

shallow water dynamics, presumably as tendencies are too small to be added to the

prognostic variables, an issue that also occurs in the Lorenz system (Fig. 3.8d) and even

in the harmonic sum (Fig. 2.5).

To quantify differences between the different 16-bit arithmetics we perform short-

term forecasts with the medium-resolution configuration. To quantify the error growth

of rounding errors with different arithmetics in a statistically robust way, we create a

number of forecasts with each member starting from one of 200 randomly picked start

dates from a 50 year long control simulation. The forecast error in the shallow water

model is computed as root mean square error (RMSE) of sea surface height with respect

to Float64 simulations. Other variables yield similar results. Each forecast is performed

several times from identical initial conditions but with the various number formats. To

compare the magnitude of rounding error that are caused by a reduction in precision to

15

3.1. ERROR GROWTH

Figure 3.1: Snapshot of tracer concentration simulated by the shallow water model

using different 16bit number formats. Mixed precision using Float32 for the prognostic

variables only is used for (e) and (f). The tracer was injected uniformly in the lower half

of the domain 50 days before. This simulation was run at an increased resolution of

∆ = 5km (400x200 grid points).

16

3.1. ERROR GROWTH

100 101 102

time [days]

10 4

10 3

10 2

10 1

100

no
rm

al
ize

d
RM

SE

Forecast error:
16bit calculations a

Float16
Posit(16,1)
Posit(16,2)
BFloat16/Float32

Float16/Float32
Float32
Posit32
discretisation error

100 101 102

time [days]

Forecast error:
16 or 8bit communication b

Float16
BFloat16
Posit(16,1)
Posit(16,2)

Posit(8,0)
Float8
discretisation error

Figure 3.2: Forecast error measured as the root mean square error (RMSE) of sea

surface height η taking Float64 as reference. (a) Forecast error for various 16-bit number
formats and mixed 16-bit/32-bit simulations for which the prognostic variables are kept

at Float32. (b) Forecast error for reduced precision communication in 8 or 16-bit with

various number formats used for encoding, with Float64 used for all calculations. The

communication of boundary values occurs at every time step for the prognostic variables.

The RMSE is normalised by a mean forecast error at very long lead times. Solid lines

represent the median of 200 forecasts per number format. The shaded areas of each

model configuration denote the interquartile range of the ensemble.

17

3.2. MEAN AND VARIABILITY

a realistic level of error that is caused by model discretisation, we also perform forecasts

with Float64 and a low-resolution model configuration, which are used to estimate the

discretization error. We normalise the RMSE by the climatological mean forecast error at

very long lead times, which is the same for all model configurations. A normalised RMSE

of 1 therefore means that all information of the initial conditions is removed by chaos.

The forecast error of Float16 is as large as the discretisation error and clearly out-

performed by 16-bit posit arithmetic (Fig. 3.2a). Both Posit(16,1) and Posit(16,2) yield

a forecast error that is several times smaller than Float16. The forecast error of 32-bit

arithmetic is several orders of magnitude smaller and is only after 200 days as large

as the error for 16-bit arithmetic at very short lead times. Also at 32 bit, posits clearly

outperform floats.

3.2 Mean and variability
To investigate the effect of rounding errors on the climatological mean state of the

shallow water system, we zonally average the zonal velocity u. The mean state is an

eastward flow of about 0.3 m/s, about 3 to 4 times weaker than individual velocities

throughout the domain (Fig. 3.3a), which is typical for turbulent flows. A weak westward

mean flow is found at the northern and southern boundary. No 16-bit format was found

to have a significant impact on the mean state. The variability of the flow around its mean

state is high throughout the domain (Fig. 3.3b). The variability is significantly increased

by 10 – 30% with 16-bit arithmetic, especially with Posit(16,2). This is probably caused by

rounding errors that are triggering local perturbation which increase variability.

3.3 Geostrophy
The turbulence in shallow water simulations is largely geostrophic, such that the pressure

gradient force opposes the Coriolis force. The resulting geostrophic velocities ug can be

derived from the sea surface height η (conventional notation)

ug =
g

f
ẑ×∇η (3.1a)

u = ug + uag (3.1b)

and deviations from the actual flow u are the ageostrophic velocity components uag. We

project both components on the actual velocities to obtain the flow-parallel components

18

3.3. GEOSTROPHY

0.1

0.0

0.1

0.2

0.3

u
[m

/s
]

Mean zonal current a

0 200 400 600 800 1000
y [km]

0.0

0.1

0.2

0.3

0.4

Va
ria

nc
e(

u)
 [m

2 /s
2]

Zonal current variability b

Float64
Float16
Posit(16,1)
Posit(16,2)

BFloat16/Float32
Float16/Float32
Float64 ensemble

Figure 3.3: Climatology and variability of the zonal current. (a) Zonally-averaged zonal

current u as a function of the meridional coordinate y. (b) Zonal variance of the zonal
current as a function of y. The shaded area denotes the interquartile temporal variability
around the (a) mean and (b) variance of reference simulation with Float64.

19

3.3. GEOSTROPHY

0.0 0.5 1.0 1.5 2.0 2.5
[m/s]

0

2

4

6

8

10

N
[1

04]
Geostrophic velocity a

Float64
Float32
Float16
Posit(16,1)
Posit(16,2)
Float16/Float32
BFloat16/Float32
Float64 low resolution

0.3 0.2 0.1 0.0 0.1 0.2 0.3
[m/s]

0

1

2

3

4

N
[1

05]

Ageostrophic velocity b

Figure 3.4: Geostrophic balance as simulated with different number formats. (a) His-

tograms of flow-parallel components of geostrophic velocity. (b) as (a) but for the

ageostrophic velocities. Horizontal bars denote the mean, 10th and 90th-percentile in

respective colours.

ũg and ũag via

ũg =
ug · u
‖u‖

, ũag =
uag · u
‖u‖

. (3.2)

The geostrophic velocities in the shallow water simulations can reach up to 2 m/s, are

hardly negative (i.e. against the flow) and have a mean of about 0.7 m/s (Fig. 3.4a). This

behaviour is well simulated with 16-bit number formats, although posits increase the

strength of geostrophic velocities slightly. Ageostrophic velocity components are found

to be isotropic, and are oriented equally frequent with and against the prevailing flow, but

rarely exceed±0.1m/s and are therefore comparably small as expected in geostrophically
balanced turbulence. Ageostrophic velocities can be seen as a measure of the physical

instabilities in the flow field and their variance is indeed increased when simulated with

16-bit number formats. Float16 shows clearly fewer ageostrophic velocities around 0,

pointing towards an increased number of simulated instabilities. Posits have an even

further increased number of ageostrophic velocities, and especially Posit(16,1) increases

the variance of those by more than a factor of two. It is unclear where in the model

integration rounding errors of 16-bit arithmetic trigger instabilities that lead to the

observed increase in ageostrophy. We conclude that although the geostrophic balance

20

3.4. GRAVITY WAVES

Figure 3.5: Histograms of the numeric values of the prognostic variables (a) zonal velocity

u, (b) sea surface height η, and the respective tendencies of (d) u and (e) η, simulated with
different 16, 32 and 64-bit number formats. Mean, 10th and 90th percentile are shown

above the histograms in respective colors. Snapshots of the tendencies of η simulated
with (c) Float64 and (f) Posit(16,1), other 16bit formats are similar. Areas of sea surface

height anomalies exceeding ±1.4m are shown in purple (negativ) and yellow (positive).
Note the break on the x-axis in (a,b,d) and (e).

in the simulations is largely maintained, rounding errors lead, likely due to an increase in

ageostrophy, to a higher variability in the flow field.

3.4 Gravity waves
As 16-bit arithmetics have no significant impact on the climatological mean state, his-

tograms of prognostic variables are also not changed (Fig. 3.5a and b). However, the

tendencies are increased by orders of magnitude with 16-bit arithmetics (Fig. 3.5d and

e), as rounding errors cause gravity waves to radiate away from eddies (Fig. 3.5f). Gravity

waves are identified from the tendency of sea surface height. Comparing their propaga-

tion to the location of anomalous sea surface height, which is used as a proxy for eddies,

we assume that rounding errors in regions of high eddy activity lead to instabilities that

propagate away in the form of gravity waves. These gravity waves are not present in

Float64 simulations (Fig. 3.5c) and tend to have only a small impact on quasi-gestrophic

dynamics, as they act on different time and length scales. It is unclear whether these

21

3.5. MIXED PRECISION ARITHMETIC IN THE SHALLOW WATER MODEL

gravity waves cause the observed ageostrophic velocities.

The tendencies are about 4 orders ofmagnitude smaller than the prognostic variables.

This poses a problem for number formats with a machine epsilon, measured as decimal

precision, significantly lower than 4 decimal places (Table 2.1). Float16 has a machine

error of 3.7, which is presumably close to the lower limit beyond which the addition of

tendencies will be round back. The BFloat16 number format has a machine error of 2.8,

which explains why no change from initial conditions in the shallow water system can be

simulated with BFloat16.

3.5 Mixed precision arithmetic in the shallow water model
In the previous simulations the entire shallow water equations were calculated with the

specified number format. As the addition of tendencies to the prognostic variables was

identified as a key calculation that is error-prone, we investigate now the benefits of

mixed precision arithmetic, where Float32 is used for the prognostic variables but the

tendencies are computed with either Float16 or BFloat16, two number formats that have

the lowest decimal precision for numbers around 1. The prognostic variables are now

reduced to Float16 or BFloat16 before calculations of the right-hand side and every term

of the tendencies is converted back before addition to the prognostic variables. Using

subscripts 16 and 32 to denote variables held at 16 and 32-bit precision, respectively,

and let Float32() be the conversion function then the continuity equation in the shallow

water system ∂tη = −∇ · (uh) becomes

∂η32
∂t

= −Float32(∂x(u16h16) + ∂y(v16h16)) (3.3)

and similar for u and v in the momentum equations.

Snapshots of tracer concentration reveal well simulated geostrophic turbulence

(Fig. 3.1e and f) with Float16/Float32 or BFloat16/Float32 and instabilities at fronts

or in filaments are visibly reduced compared to pure 16-bit arithmetic. The forecast

error is strongly reduced once the prognostic variables are kept as Float32 (Fig. 3.2a),

supporting the hypothesis that the addition of tendencies to the prognostic variables

is a key computation with low rounding error-tolerance. Despite BFloat16 not being

suitable for shallow water simulations when applied to all computations, mixing BFloat16

with Float32 arithmetic yields a similar error growth to posits, which is well below the

discretization error. Mean state or variability are virtually identical for both mixed

precision cases (Fig. 3.3) compared to the Float64 reference. The geostrophic balance

22

3.5. MIXED PRECISION ARITHMETIC IN THE SHALLOW WATER MODEL

is largely unaffected, but ageostrophic velocities increase in variance, especially for

BFloat16 (Fig. 3.4). Gravity waves are similarly present for mixed precision although

weaker for tendencies computed with Float16 (Fig. 3.5d) and, as discussed, they tend

to not interact with the geostrophic time and length scales. Although the results show

that Float16 is generally a preferable number format over BFloat16 for the applications

presented here, we acknowledge that the conversion between Float32 and Float16 will

come with some computational cost. In contrast, the conversion between BFloat16

and Float32 is computationally very cheap as both formats have the same number of

exponent bits. Removing significant bits, rounding, and padding trailing zeros, are the

only operations for this conversion. Following the results here, mixing 16 and 32-bit

precision is found to be a possible solution to circumvent spurious behaviour due to

16-bit floating-point arithmetics when solving the shallow water equations. Performance

benefits are still possible as most calculations are performed with 16 bit, with key

computations in 32 bit to reduce the overall error. Depending on the application, the

conversions between number formats are assumed to be of negligible cost. This is an

attractive solution as hardware-accelerated 16-bit floating-point arithmetic is already

available on graphic or tensor processing units and implementations therefore do not

rely on the development of future computing hardware, as it is the case for posits.

Inaccurate rounding: Logarithmic fixed-point numbers
Motivated by the successful use of BFloat16 to compute the tendencies, we want to test

two logarithmic fixed-point number formats that have a similar distribution of decimal

precision compared to BFloat16: LogFixPoint16 and Approx14. The former has a slightly

higher precision (machine precision 3.2, see Table 2.1) than BFloat16 (machine epsilon

2.8) whereas Approx14 has a slightly lower (2.6). Logarithmic number formats have the

advantage that multiplications (and divisions) do not involve rounding and are therefore

exact (under or overflows excluded). Whether this is important in a simulation where

both multiplications and additions (as well as subtractions) are required, is investigated.

Similar to BFloat16, LogFixPoint16 and Approx14 are not suited for the entire model

and we therefore restrict their use only to the computation of the tendencies in a

mixed-precision approach with Float32 used for the prognostic variables.

The same benchmark simulation in the shallow water model as before is used to

provide some evidence that logarithmic number formats violate conservation laws, at

least with the current round-to-nearest rounding mode in log2-space (Fig. 3.6 and

see Eq. 2.9). Both formats represent the general picture of tracer advection correctly,

23

3.5. MIXED PRECISION ARITHMETIC IN THE SHALLOW WATER MODEL

Figure 3.6: Snapshot of tracer concentration simulated by the shallow water model with

logarithmic fixed-point numbers used to calculate the tendencies. Float32 is used for the

prognostic variables. The tracer was injected uniformly in the lower half of the domain 25

days before. This simulation was run at a resolution of∆ = 5km (400x200 grid points).

24

3.6. REDUCED PRECISION COMMUNICATION

LogFixPoint16 clearly more accurate than Approx14, which is unsurprising given the

higher precision. However, Approx14 introduces a tracer sink, whereas LogFixPoint16

increases the tracer concentrations beyond physically possible values. We argue that this

is related to the roundingmode, such that a revision is necessary to ensure a conservative

(or unbiased) rounding mode is in place that does not violate conservation laws. The

differences between Approx14 (being a tracer sink) and LogFixPoint16 (being a tracer

source) is presumably related to the exact implementation of rounding in additions.

As the two formats violate conservation in either direction, this could mean that a

conservative rounding is possible. This can presumably be achieved with a change of the

rounding mode to represent exactly round-to-nearest (and tie to even) in linear-space

although calculated in log2-space. A thorough analysis of other conserved quantities

in the shallow water system, such as mass or energy, is necessary to assess whether

logarithmic number formats are a promising alternative to floating-point numbers.

3.6 Reduced precision communication
A standard method to parallelise simulations is the distributed-memory parallelism via

Message Passing Interface (MPI). We emulate MPI-like communication in the shallow

water model with the copying of boundary values between the right and left boundary

(periodic boundary conditions). Although the shallow water model does not run in

parallel, reducing the precision in the copying of boundary values introduces an equiva-

lent error as if reduced precision MPI was used to communicate between subdomains.

Reduced precision is applied for the communication of the prognostic variables at every

Runge-Kutta substep.

Regarding snapshots of tracer concentration simulated with reduced precision com-

munication show a negligible error for Float16 and posits (Fig. 3.7). The error is largest

at fronts and not concentrated around the boundaries. Encoding the communication

with BFloat16 introduces a larger error than for the other 16-bit formats as the decimal

precision is with 2.8 clearly lower (Table 2.1) for the range of values occurring within

the prognostic variables (Fig. 3.5a and b). The errors are quantified by the RMSE of

surface height η as before and are up to about two orders of magnitude smaller than the

errors that result from 16-bit arithmetic. As even the worst 16-bit communication format,

BFloat16, has a smaller error than the best mixed precision formats, Float16 with Float32,

we extend the short-term forecast experiments to include two 8-bit formats, Posit(8,0)

and Float8 (see Table 2.1 for a description). Both formats are found to be suitable for

reduced precision communication here and do not introduce an error that is larger than

25

3.6. REDUCED PRECISION COMMUNICATION

Figure 3.7: Snapshot of tracer concentration simulated by the shallow water model using

reduced precision communication. The communication of boundary values occurs at

every time step for the prognostic variables. Float64 was used for all calculations. Areas

where the absolute error exceeds 0.05 are shaded in red only in the lower half of the

domain. The tracer was injected uniformly in the lower half of the domain 50 days before.

This simulation was run at a resolution of∆ = 5km (400x200 grid points).

26

3.7. STOCHASTIC ROUNDING

the discretization error. Having said that, Float8 communication introduces an error that

is comparably large initially but grows only linearly in the first 50 days of the simulation,

which is in contrast to the exponential error growth observed for 16-bit arithmetic.

Reduced precision communication was not found to have a significant impact on

either mean state, variability, geostrophy or tendencies. We acknowledge that not all

weather and climate models would benefit from a reduced precision communication, as

the acceleration potential depends on many factors specific to a model and the used

hardware, e.g. number of nodes in a cluster and how shared and distributed memory

management is realized. However, in the case that communication is an identified per-

formance bottleneck in a given application, the results here suggest that reliable model

simulations can be achieved with 16 or even 8-bit communication. The range of values

for the prognostic variables here is comparably small, facilitating 8-bit communication.

Such reductions might be in general difficult to implement. Although we show that posits

are a preferable number format to be used for 16-bit communication, it remains an

open question how efficient an implementation can be, given the computational cost of

the conversion between formats.

3.7 Stochastic rounding
Simple stochastic models like the Lorenz 1963 system are of such low dimensionality that

the attractor drastically decreases in complexity for large rounding errors (Fig. 3.8b and

d). Both Float16 and especially BFloat16 simulate an attractor that consists of an orbit

with a relatively short period. Due to the deterministic nature of the rounding errors this

orbit repeats and its period depends on the initial condition and the time step size Klöwer

et al. [2019]. Although some 16-bit number formats like posits or sonums (see section
4) are able to simulate an attractor that resembles more the Float64 approximation to

the analytic solution, we will investigate the effect of exact-in-expectation stochastic

rounding (see section 2.6 for details) for Float16 and BFloat16, two number formats with

the largest rounding errors for default round-to-nearest.

Simulating the Lorenz system with BFloat16 plus stochastic rounding drastically

improves the complexity of the attractor (Fig. 3.8c). Therefore, the main problem of

simulating a complex attractor even for BFloat16 is not a small amount of representable

numbers which undersamples the state space but the rounding errors that occur when

calculating the tendencies, and presumably especially the addition of the tendencies to

the prognostic variables (see section 3.5). Stochastic rounding introduces a relative error

that scales inversely with the precision of a given number format (see section 2.6). As

27

3.7. STOCHASTIC ROUNDING

Figure 3.8: Lorenz attractor simulated with stochastic rounding. Deterministic round-to-

nearest reduces the complexity of the Lorenz attractor for (b) Float16 and (d) BFloat16.

With stochastic rounding for (a) Float16 and (c) BFloat16, however, the complexity of the

attractor is considerably increased.

the precision of BFloat16 is considerably lower than for Float16, the introduced errors

are also larger, which can be seen as the trajectories do not represent smooth lines, but

are clearly perturbed, especially for higher z-values (where the absolute rounding errors

are larger). Hence, the stochastic rounding error for Float16 is much lower, such that

trajectories are smooth and do not show a visible sign of stochastic perturbations (Fig.

3.8a), and represent well the attractor simulated at high precision [Klöwer et al., 2019].
Technically, this attractor is also subject to repetition as the underlying random number

generator (Xoroshiro128+, Blackman & Vigna [2019]) has a finite period of 2128, which is

practically of negligible importance.

Motivated by the very promising effect that stochastic rounding has on simulations

of the Lorenz system with 16-bit arithmetics, we implement stochastic rounding in the

28

3.7. STOCHASTIC ROUNDING

Figure 3.9: Snapshot of tracer concentration simulated by the shallow water model with

stochastic rounding. The tracer was injected uniformly in the lower half of the domain 25

days before. This simulation was run at a resolution of∆ = 5km (400x200 grid points).

shallow water model used previously to investigate stochastic rounding in systems that

are subject to spatial discretization and stability constraints. Repeating the simulations

presented in Fig. 3.1 and 3.7 with stochastic rounding for BFloat16, which was previously

found to not allow time development, shows now, despite unrealistic dynamics, a vague

resemblance with the reference simulation (Fig. 3.9b). Stochastic rounding for Float16

has a promising effect: Small scale instabilities, present for round to nearest, are largely

absent and the tracer advection well resembles the reference simulation with Float64.

We therefore conclude that stochastic rounding has the potential to be superior to round-

to-nearest in the applications presented here. Further analysis is needed to assess its

presumably very positive effect on low-precision simulations.

29

4 Sonums
A new number format, called Self-Organizing NUMbers (sonums), is developed. Motiva-

tion, design and implementations are discussed in the following.

4.1 Numbers that learn from data
The design of floating-point numbers in the 1970s and 1980s was motivated to meet

several criteria: (i) hardware-friendly, i.e. the number format was designed to map easily

from existing arithmetic circuits into bits; (ii) multi-purpose, i.e. initially declared as

format for scientific computations it was supposed to be able to represent very large
numbers O(10−100) to O(10−300) as well as very tiny numbers O(10−100) to O(10−300)

with the same precision, to allow the use in many different fields of science (iii) error

analysis-friendly, i.e. especially Float64 was designed to allow for very precise calculations,

such that most scientists would not need to perform a numerical error analysis.

In the following we will relax these criteria and seek to find a number format that

has the lowest rounding errors for a given application. We thereby ignore any hardware

limitations, and create this number format purely on the basis of a software emulator.

In fact, we end up designing it based on look-up tables. Arithmetic operations are with

look-up tables not functions that calculate the result based on the inputs, but return

the result from an array where the inputs determine the indices. This is in general only

feasible for a small set of different inputs, as the underlying arrays have to be stored in

memory. Look-up tables for 16-bit arithmetic, as considered here, are of a size of several

GB which is unfeasible for current computing hardware. Look-up tables therefore are

stored in RAM whereas a storage in much smaller low-level caches is necessary for speed.

Every additional bit quadruples the size, such that look-up tables are only attractive for

very low precision number formats or can be used for software emulators for up to

16 bit. We also do not aim to create a multi-purpose number format, but conversely a

number format that is flexible enough to accommodate the precision requirements of a

given algorithm as good as possible.

Motivated by the decimal precision analysed in the previous sections for floats and

posits, the new number format is supposed to represent numbers in a given application

with most precision for the numbers that occur most frequently and with no bitpatterns

for numbers that never occur. Consequently, this number format is supposed have

bitpatterns that occur equally frequent. This concept aligns with maximising entropy,

30

4.2. MAXIMUM ENTROPY TRAINING

which will be discussed in the next section. In analogy to the unsupervised learning

of self-organizing maps, which are mostly used in two or more dimensions, we call

the new number format self-organizing numbers, or sonums in short. Note that the
self-organization is here carried out on the real number axis, i.e. in one dimension.

We will make use of ideas introduced by the posit framework as introduced in section

2.3 as most redundant bitpatterns that occur in floats (±0,±∞, and a very large share
of bitpatterns for NaNs, see Table 2.1) are removed for posits and only 2 bitpatterns

for zero and NaR are retained as exceptions. The sonum circle is therefore designed

in analogy to the posit circle (Fig. 2.1), but will be populated differently except for zero

and NaR, which are mapped to identical bitpatterns for both formats. As illustrated in

Fig. 4.1 sonums retain the symmetry with respect to zero, such that there is a reversible

map (the two’s complement, Choo et al. [2003]) between a number and its negation.
However, sonums do not have a symmetry with respect to the multiplicative inverse as

posits or floats have (note that for posits or floats this symmetry is only perfect when the

significand is zero, otherwise rounding is applied, and excluding subnormal numbers). In

the illustrated sonum circle it is therefore the idea to keep the real number value for s1 to

s7 flexible and subject to training. In fact, sonums can be trained to replicate exactly the

behaviour of posits with the same number of bits, but for any number of exponent bits.

An n-bit sonum format hasm = 2n−1 − 1 real number values that have to be defined.

For 4-bit sonums m = 7, for 8-bit m = 127 and for 16-bit m = 32767. The size of the

look-up tables scales withm2
and is therefore quartic with the number of bits. Making

use of commutativity for addition and multiplication as well as anti-commutativity for

subtraction, the size reduces by a factor of two for those operations. The required size is

therefore about 8KB per table for 8 bit and about 1GB per table for 16 bit. Division tables

are twice that size. Sonums bear some similarity with type II unums, the predecessor of

posits [Gustafson & Yonemoto, 2017].

In the following we will describe the maximum entropy training (also called quantile

quantization) for sonums and present ways to train sonums to minimize the decimal

rounding error.

4.2 Maximum entropy training
Given a data set D, regarded as j-element array of real numbers or a high precision

approximation, we wish to find the sonum values si for i ∈ 1, ..., 2n−1 − 1 to maximise

the entropy for an n-bit sonum format when representing the numbers in D. The

31

4.2. MAXIMUM ENTROPY TRAINING

Figure 4.1: The 4bit sonum circle. Two bitpatterns are predefined: zero and NaR (Not-a-

Real, or complex infinity), the remaining bitpatterns s1 to s7 can be user-defined and are
usually subject to training based on provided data. Sonums are always symmetric with

respect to zero.

information entropyH (or Shannon entropy, MacKay [2003]) is defined as

H = −
∑
i

pi log2(pi) (4.1)

where i is one possible state (here: bitpattern) with probability pi, such that
∑

i pi = 1

(Note that we define pi log2(pi) = 0 for pi = 0). As we use the logarithm with base 2, the

information entropy has units of bits. For a uniformly distributed probability, i.e. pi = 1
m

withm possible states the entropy is maximised to n = log2(m) bits. In other words, the

entropy is maximised when all states are equally likely and is zero for a discrete Dirac

delta distribution.

We apply the concept of information entropy to the encoding of the standard uniform

distribution U(0, 1) between 0 and 1 with Float16, as an example (Fig. 5.1). Analysing the

bitpattern histogram, we observe no bitpatterns in Float16 occur that are associated with

negative numbers or numbers larger than 1. Converting the frequency of occurrence of

every bitpattern into a probability pi, we calculate the entropy as 12 bit of theoretically

16 bit that are available in Float16. This can be roughly interpreted as follows: The sign

bit is unused as only positive numbers occur. One bit is redundant as only values in (0, 1)

occur and none in (1,∞). Another two bits are unused due to the uneven bitpattern

distribution between (0, 1).

Maximising the entropy for the standard uniform distribution U(0, 1) with sonums

32

4.2. MAXIMUM ENTROPY TRAINING

means that the values si, i ∈ {1, ...,m} will be associated with numbers that are equi-
distantly distributed between 0 and 1. In theory therefore, si = i

m , which corresponds to

the fixed-point numbers with a range from 0 to 1. In practice, one bitpattern is reserved

for 0 and one for NaR, such that the entropy is not perfectly maximised. Furthermore,

due to the symmetry with respect to zero, sonums have only 15 bit entropy as half the

bitpatterns are reserved for all −si, which are not actually used. This poses only an issue
in this artificial example, as many applications produce numbers that are symmetric with

zero.

The generalization to arbitrary distributions, i.e. for any data set D, is therefore

proposed as follows. In short, the arrayD is first sorted then split intom chunks of equal

size. For each chunk the midpoint is found which is identified as the corresponding value

for si. This can be written as an algorithm as shown in Fig. 4.2. We use the arithmetic

average between the minimum and maximum value (i.e. midpoint) in each chunk to

satisfy the round-to-nearest rounding mode.

1 function maxentropy_classification(m::Int,data::AbstractArray)
2
3 N = length(data)
4 n = N ÷ m # integer division: number of data points per chunk
5
6 # throw away random data for equally sized chunks of data
7 data = shuffle(data[:])[1:n*m]
8 sort!(data)
9

10 # reshape data into a matrix, each chunk one column
11 datam = reshape(view(data,:),(n,m))
12
13 # array of sonum values
14 s = Array{Float64,1}(undef,m)
15
16 for i in 1:m
17 # midpoint: arithmetic mean of min and max within chunk
18 s[i] = (datam[1,i] + datam[end,i])/2
19 end
20
21 return s
22 end

Figure 4.2: A maximum entropy classification algorithm to train sonums.

Once sonums are trained (i.e. the values si are set) the decimal precision can be

calculated. An example is given in Fig. 4.3, which shows how decimal precision of sonums

follow the distribution of data from the Lorenz 1996 model, which will be introduced

and discussed in section 4.4. After training the look-up tables have to be filled, which

means that every arithmetic operation between all possible unique pairs of sonums

33

4.3. MINIMISING THE DECIMAL ERROR

is precomputed. This is for 8-bit sonums (Sonum8) fast, and even for 16-bit sonums

(Sonum16) completed within a few minutes. Subsequently, sonums can be used as

a number format like floats and posits, however, sonums will presumably only yield

reliable results for the application they were trained on. We will investigate in section 4.4

how sonums compare to floats and posits in the Lorenz 1996 system.

4.3 Minimising the decimal error
In the previous section we discussed a maximum entropy approach for training sonums,

however, there are other training approaches possible that we want to investigate. Given

a data setDj , j ∈ {1, ..., N} of length N , and a maximum entropy-trained set of sonum
values si, i ∈ {1, ...,m} we may want to know whether the si actually minimize the
average rounding error ARE

ARE =
1

N

N∑
j

|Dj − rounds(Dj)| (4.2)

with

rounds(x) = arg min
si∈s

|x− si| (4.3)

being the round-to-nearest rounding function for a given set of sonums s. Alternatively,

one could require the average decimal error ADE to be minimized

ADE =
1

N

N∑
j

| log10(
Dj

rounds(Dj)
)| (4.4)

which is equivalent to the (linear) average rounding error ARE when the logarithm with

base 10 is applied toDj beforehand and the rounding function is changed accordingly.

Based on the framework around decimal precision presented in the previous section one

may argue that it is more important to minimize ADE than ARE, but further analysis is

needed to assess this with respect to a statistic like forecast error.

How to find s given D to minimize either ARE or ADE? We are therefore seeking

a one-dimensional classification method that sorts all values in D into classes si. A

classification is therefore a clustering and the two terms can be used interchangeably.

Using the Jenks Natural Breaks Classification [Jenks & Caspall, 1971] is proposed and

presented in the following in a modified version, that was found to be better suited

in first tests for our applications. The Jenks classification is usually applied on multi-

34

4.3. MINIMISING THE DECIMAL ERROR

Figure 4.3: Decimal precision of sonums trained on data from the Lorenz 1996 model

via maximum entropy. (a) Decimal precision of Sonum16 in comparison to Float16 and

Posit(16,1). Note that the decimal precision distribution is shifted by one decade to the

right to account for the scaling s = 10−1 used. (b) Histogram of the numbers that occur
in Lorenz 1996 that were used for training.

35

4.3. MINIMISING THE DECIMAL ERROR

modal distributions with a few classes. Here, we are attempting to find up to 32767

(for 16-bit sonums) classes from millions of data points or more, which complicates

the convergence of this iterative algorithm. The original Jenks algorithm is a method to

minimize in-class variance while maximizing the variance between classes.

The modified Jenks classification algorithm is presented in a simplified version.

(0) Convert allDj to their absolute value |Dj |.

(1) Definem (arbitrary) initial classes, each with an upper break point bi, such that all

Dj within the previous break point bi−1 and the i-th break point bi belong to class

i. The m-th class break point is the maximum in Dj . We choose the maximum

entropy method of the previous section as a initial classification.

Then loop over

(2) For each class i, calculate an (unnormalized) error norm Ei of values in that class

with respect to the class midpoint. The error can be the total rounding error or the

total decimal error for example.

(3) Calculate the sum of the error norms of all classes
∑

iEi, which is important to

assess convergence. Dividing by N yields the average rounding or decimal error,

depending on which error norm was used.

(4) For each class i except the last one, compare the error Ei to the next class error

Ei+1.

(4.1) If Ei < Ei+1: Increase bi by r, which will be defined shortly. That means, shift

the break point to the right on the real axis to make the i-th class bigger and the

(i+ 1)-th class smaller. This will increase Ei and decrease Ei+1.

(4.2) Else: Decrease bi by r.

Choosing an appropriate value for r, which is a flux of data point from one class to a

neighbouring class, is difficult. We found that r should scale with the size of the donating

class, such that a certain share of points should be passed on. Additionally, we decrease

the flux r if the previous flux direction was opposite (4.2 was evaluated instead of 4.1 or

vice versa), which is helpful to aid convergence. However, we increase the flux r if the

previous flux direction was the same, which accelerates convergence.

In the next section we will test sonums against floats and posits. At the moment

we will restrict this analysis to sonums which were trained with the maximum entropy

classification. Using sonums with minimised rounding error or decimal error is subject

to further analysis to satisfy convergence.

36

4.4. SONUMS IN LORENZ 1996

4.4 Sonums in Lorenz 1996
Sonum16 will be tested against floats and posits in the one-level Lorenz 1996 model

Hatfield et al. [2018]; Lorenz & Emanuel [1998], which is a simple chaotic weather model,
described by the following equations

dXk

dt
= Xk−1(Xk+1 −Xk−2)−Xk + F (4.5)

with k ∈ {1, 2, ..., 36}. Periodic boundary conditions are applied, such thatX0 = X36 and

X37 = X1. The first term on the right-hand side represents advection and the second

is a relaxation term. The forcing is set to F = 8 and independent of space and time.

Although the Lorenz 1996 model can be extended to a two or three-level version, such

that levels can be interpreted as large, medium and small-scale variables, the model

used here is the simple one-level version. The model is spun-up from restXk = 0 with

a small perturbation in one variable. Scaling can be applied by multiplication with a

constant s, such that X̂k = sXk

dX̂k

dt
= s−1X̂k−1(X̂k+1 − X̂k−2)− X̂k + F (4.6)

which controls the range of numbers, occuring in the simulation. As similarly suggested

for the Lorenz 63 model [Klöwer et al., 2019], we use s = 10−1 (which is precomputed)

for the simulation of Eq. 4.6 with posits to center the arithmetic operations around 1.

This is beneficial for posit arithmetic as otherwise the prognostic variablesXk are O(10).

A Hovmoeller diagram illustrates the chaotic dynamics simulated by the Lorenz 1996

model (Fig. 4.4). The initial perturbation inX1 is advected throughout the domain within

the first time steps. After this first wake, the model’s state becomes chaotic. Posit(16,1)

represents well the dynamic, as shown in the comparison with Float64 for reference.

To quantify the forecast error, we run a set of 1000 forecasts per number format,

starting from a random time step of a long control simulation. The simulation with

Float64 is taken as reference truth. Float16 has an exponential error growth that starts

much earlier than the error growth for Posit(16,1) (Fig. 4.5). Both formats have on

average an identical error growth rate. Posits clearly cause a reduced rounding error

compared to floats at all lead times, making posits a better suited number format for

the simulation of the Lorenz 1996 model.

We now use the long control simulation with Float64 to produce a dataset that

contains all prognostic variables as well as the arithmetic results of all intermediate

37

4.4. SONUMS IN LORENZ 1996

Figure 4.4: Solution of the Lorenz 1996 model presented as Hovmoeller diagram. (a)

Float64 arithmetic, (b) Posit(16,1) arithmetic.

terms calculated for the tendencies. 16-bit sonums are trained with this dataset, such

that they can self-organize around the numbers that occur most frequently within the

Lorenz 1996 model (Fig. 4.3b). Consequently, Sonum16 has a slightly higher decimal

precision compared to posits for the mode of the data distribution. A second mode is

created for the tendencies, for which numbers of the order of 10−1 frequently occur. The

decimal precision of Sonum16 drastically drops beyond the largest numbers O(100) in

the Lorenz 1996 model, as no bitpatterns have to be used to encode these real numbers.

After training, the sonum circle (Fig. 4.1) is defined. All arithmetic operations are

precomputed creating look-up tables for multiplication, addition and subtraction. No

look-up table is created for division as the Lorenz 1996 equations (Eq. 4.6) are written

division-free (s−1 is precomputed). We can now quantify the forecast error as for floats

and posits, running a set of 1000 forecasts from the same initial conditions as used for

floats and posits.

Sonum16 has a smaller forecast error compared to posits for the important lead

times where the normalised RMSE exceeds 1% (Fig. 4.5). Interestingly, although the error

growth is much faster for the first time steps, it levels off afterwards and approaches the

same error growth rate as for floats and posits once the normalised RMSE exceeds about

1%. This points towards a higher potential of Sonum16, when the cause of the initial

rapid error growth is understood and circumvented with adjustments in the training

method. As discussed in the previous section, sonums can be trained to minimize the

average decimal rounding error, an aspect that requires further analysis to understand

the optimal distribution of decimal precision for a given application. Nevertheless,

38

4.4. SONUMS IN LORENZ 1996

0 1 2 3 4 5
time

10 4

10 3

10 2

10 1

100

RM
SE

 (n
or

m
al

ise
d)

Lorenz96 error growth
Float16
Posit(16,1)
Sonum16 (max-entropy)

Figure 4.5: Error growth in the Lorenz 1996 system as simulated with Float16, Posit(16,1)

or Sonum16. The error has been normalised by the climatological forecast error. Shaded

areas denote the interquartile range of 1000 forecasts with the respective format.

sonums already provide perspectives towards an optimal number format for a given

application. The main characteristics presumably are: (i) high precision for the most

frequently occurring numbers, (ii) a tapered precision towards the smallest numbers

and (iii) no redundant bitpatterns for very large and very small numbers that do not

occur. Posits fulfill these criteria better than floats, which is likely the reason why they

outperform floats in the applications presented here.

39

5 Sherlogs
This chapter will introduce the analysis number format Sherlogs, which can be used to

estimate the algorithmic information entropy and to identify bottlenecks in algorithms

that prevent them to be executed successfully with 16-bit arithmetic.

5.1 Logging arithmetic results
A central challenge in the development of the shallow water model used in section 3 was

to identify subroutines that are error-prone and cause a degradation of the simulation

when executed with 16-bit numbers. For simple models, such as the Lorenz systems, this

is a comparably easy task, due to the low algorithmic complexity. For the shallow water

model, knowledge about the simulated physics, the constants involved and physical

scaling arguments were required to identify problematic parts of the model. Therefore,

a try-and-error approach was successful, that does not scale well to models of higher

complexity and the required time to understand an algorithm from the perspective of

rounding errors increases rapidly.

To overcome this issue, we developed an analysis number format that helps to

identify error-prone subroutines in models of high complexity by logging the arithmetic

results that occur in every arithmetic operation performed. This number format is

called Sherlogs and is considered to be an analysis format, as it behaves numerically like

default floating-point numbers (either Float32 or Float64), but executes an additional

logging function on every call to one of the arithmetic functions which is used to log

the arithmetic result in a histogram. Within the type-flexibility of the Julia language

framework, we can execute any type-stable function with Sherlogs as number format

without the need to rewrite or adjust this algorithm in any way. Sherlogs come in various

versions: Sherlog64 behaves like Float64, Sherlog32 behaves like Float32 and Sherlog16

behaves like any 16-bit number format that can be passed on as a parameter. Every

Sherlog format takes a 16-bit number format as a parameter that defines the bins of the

bitpattern histogram.

The resulting bitpattern histograms that are produced by Sherlogs will show whether

certain bitpatterns occur very frequently in an algorithm or whether some bitpatterns

do not occur at all. Highly frequent bitpatterns are likely associated with rounding

errors, as a range of values was probably rounded to one representable number, but

can also result from the repeating computation of constant values. An algorithm that

40

5.2. ALGORITHMIC INFORMATION ENTROPY

Figure 5.1: Algorithmic information entropy of the LU-decomposition. Float16 is used

as number format for binning. The entries in the input arrays A and b are uniformly
distributed in (0, 1) (blue), whereas the numbers in the LU-decomposition are shown in
orange.

produces a comparably smooth bitpattern histogram can likely be executed successfully

with low precision arithmetics, as its algorithmic information entropy is higher than for

multi-model bitpattern distributions, as discussed in the next section.

Similar to Sherlogs, we developed another number format DrWatson, which logs the
stacktrace when a provided condition is fulfilled. This condition can be passed on to

DrWatson as parameter and is usually a comparison like x greater than c, to identify
parts of a function where very large numbers occur. Using DrWatson as a number

format, therefore can identify where an arithmetic result that is of a certain size occurs.

Consequently, DrWatson provides the information in which line of the code a certain

arithmetic result occurs, which facilitates the debugging with respect to rounding errors.

5.2 Algorithmic information entropy
Bitpattern histograms and algorithmic information entropy is introduced with the ex-

ample of the solution of a linear equation system, which is performed with a standard

LU-decomposition for matrices. We create a matrix A and a vector b, both with random

uniformly distributed entries in (0, 1) and solveAx = b for x. Without detailed knowledge

of the LU-decomposition algorithm, we can convert the entries in A and b to Sherlogs

and execute Julia’s LU-decomposition.

The retrieved bitpattern (Fig. 5.1) based on bins corresponding to representable

41

5.2. ALGORITHMIC INFORMATION ENTROPY

numbers with Float16 reveals that although the inputs A and b have only positive entries,

the algorithm requires both positive as well as negative numbers similarly. Furthermore,

the largest numbers (in absolute terms) produced are around 4, with very rarely numbers

that are larger. As we do not observe any spikes, or number for the bitpatterns associated

with ±∞, we conclude that this algorithm can likely be executed with Float16 without
major degradation in the accuracy of the result, which can be verified.

Given the bitpattern histogram (which depends on the inputs A and b as well as the

number format used for logging) we can calculate the algorithmic information entropy

for the LU-decomposition which is estimated to be 14.15 bit, relative to the maximum

entropy of 16 bit. Training sonums with the maximum entropy method on this bitpattern

histogram will taper the precision for numbers ofO(10) and larger and will allocate more

precision for numbers around 1, which matches the general idea of the decimal precision

of posits. We would therefore argue that posits are also a more suitable number format

for the LU-decomposition presented here.

Following this methodology, we can estimate the algorithmic information entropy

of various algorithms, including chaotic models of atmospheric and oceanic circulation.

Future analysis will investigate this for the shallow water model presented in section 3,

which will provide a more systematic approach to the rounding error mitigation methods

already discussed in Klöwer et al. [2019].

42

6 Conclusions
Computational speed is a limitation of current weather and climate models towards

more reliable weather forecasts and climate predictions. Recent progress on specialised

computing hardware was shown to yield significant performance increase on graphic

and tensor processing units, especially for low precision number formats that use 16

bit to encode real numbers. This study offers perspectives for weather and climate

models computed in 16-bit arithmetic to benefit from hardware acceleration that will be

available on future computing architecture.

Using a software emulator we have tested various different 16-bit number formats

for the computation of weather and climate models of low and medium complexity.

The investigate data types are floating-point numbers (Float16 and BFloat16), posit

numbers (Posit(16,1) and Posit(16,2)), logarithmic fixed-point numbers (LogFixPoint16

and Approx14), as well as a newly developed self-organizing number format called

Sonum16. Among those number formats we identified posits as the best general-

purpose format for a minimal rounding error in our applications. Once trained on a

specific application, sonums were shown to outperform all existing number formats.

Due to the self-organization of sonums (which can be done to maximise entropy or to

minimize rounding errors) we identified the key requirements for number formats to

reduce rounding errors: A high decimal precision for the most frequent numbers (often

the prognostic variables); a tapered precision towards zero and towards the largest

occurring numbers; and as few redundant bitpatterns as possible.

Every number format comes with a rounding mode for (at least some of) the arith-

metic operations. Default rounding mode for floats and posits is round-to-nearest, but

we have tested two additional modes in this study: Round-to-nearest in log2-space

and stochastic exact-in-expectation rounding. While the former was shown to be bi-

ased, resulting in violation of conservation laws, the latter was found to be a better

suited rounding mode for our applications. Stochastic rounding significantly reduced the

rounding error and overcame issues that led to a stalling of the model dynamics with

round-to-nearest. Although stochastic rounding was emulated in software, the results

promote stochastic rounding in hardware as a way to make existing 16-bit number for-

mats more suitable for weather and climate models. Including stochasticity in hardware

could be an efficient way to represent uncertainty in ensemble forecasts in addition to

or instead of the existing stochastic parameterizations of unresolved processes.

This study suggests that replacing Float32 or Float64 with 16-bit arithmetic for all

43

6. CONCLUSIONS

calculations in weather and climate models will likely fail, as mitigation methods need

to be applied, possibly on various levels to make algorithms resilient against increased

rounding errors with low precision numbers. One mixed-precision approach is proposed,

which uses Float32 for the prognostic variables and various 16-bit formats to calculate

the tendencies. This circumvents the issue that arises when the increments of the prog-

nostic variables with small tendencies get round back. Mixed-precision is a promising

approach as it can be implemented on present-day hardware and does not require

future processors. In case the communication between processors is a performance

limitation we identified 16 and even 8-bit encodings for the communicated variables to

be largely sufficient and the introduced error negligible compared to other sources of

error. For a complex weather or climate model distributed on large supercomputers this

could drastically reduce the bandwidth of communication.

Additionally to the algorithmic changes proposed by Klöwer et al. [2019] for rescaling,
re-ordering and precomputing these mitigations methods make it more realistic to run

the first complex weather and climate models in 16-bit arithmetics in the near future. To

systematically identify algorithmic changes that are needed to reduce rounding errors

with low precision numbers, we developed the analysis number format sherlogs, that

can be used to create bitpattern histograms of arbitrarily complex algorithms, estimate

the algorithmic information entropy and identify lines of code that may cause serious

rounding errors. With this tool, we hope to aid the transition of existing complex models

towards 16-bit arithmetic.

Although this study provided evidence that the transition towards 16-bit arithmetic

for weather and climate models is a difficult challenge, we presented several approaches

that have the potential to make this transition a success towards more reliable weather

forecasts and climate predictions.

44

7 Thesis outline
7.1 Outline
A thesis outline is presented. Only missing contributions to complete the prosed contents

of the thesis are discussed.

1 Information entropy and error norms
1.1 Information entropy
This section will be extended to a general introduction to information theory.

1.2 Norms for rounding errors
This section will extend the brief discussion about rounding errors presented in this

report to a more complete section on rounding error norms in general.

1.3 Binary and decimal precision
2 Number formats and rounding modes
2.1 Integer and fixed-point numbers
2.2 Floating-point numbers
2.3 Posit numbers
2.4 Logarithmic fixed-point numbers
This section will be extended with an unbiased rounding mode for logarithmic fixed-point

numbers.

45

7.1. OUTLINE

2.5 Round-to-nearest
2.6 Stochastic rounding
3 A 16-bit shallow water model
3.1 The shallow water equations
3.2 Error growth
3.3 Impact on the physics
3.4 Mixed-precision approaches
3.5 Reduced precision communication
3.6 Conserved quantities
This section will include an analysis on the conservation of the analytically conserved

quantities in the shallow water system (mass and tracer volume), which is important

to evaluate the stochastic rounding and an unbiased rounding mode for logarithmic

fixed-point numbers.

4 Self-organizing numbers
4.1 A maximum entropy number format
4.2 Minimising the decimal error
This section will be completed with an optimized version of the Jenks classification with

verifications on data sets.

4.3 Sonums in applications
This section will be completed with the application of sonums in the shallow water model.

For this a training based on bitpattern histograms needs to be developed and tests will

be performed to assess sonums trained to maximise entropy in comparison to minimise

the rounding-error.

46

7.1. OUTLINE

5 Precision-resilient algorithms
5.1 Rescaling equations
5.2 A semi-Lagrangian advection scheme for 16-bit
5.3 Systematically identifying rounding errors: Sherlogs
Examples will be provided for the shallow water model how sherlogs can be applied in

more complex models.

5.4 Algorithmic information entropy
The algorithmic information entropy of different models (Lorenz systems and shallow

water) will be investigated and presented in this section.

6 ? Data compression
This is a potential chapter based on a proposal on climate data compression for the

ECMWF Summer of Weather Code. This chapter depends on the acceptance of the

proposal and contents will be based on project outcomes.

7 ? Oceananigans
This is a potential chapter based on a planned research visit to MIT in Summer 2020,

which was postponed from Spring 2020 due to Covid-19. Oceananigans is an ocean

model that is developed by MIT within the Clima project. This chapter anticipates to

document a low precision version of Oceananigans, which is currently the most complex

model in climate science written in Julia. Currently planned is to use Oceananigans that

already runs on graphic processing units to investigate 32 or even 16-bit arithmetics in a

more complex model to what was used in this study. As it is written in Julia, most of my

developments can be directly used. This chapter depends on the outcomes of the work

with Oceananigans.

47

7.2. TIMELINE

7.2 Timeline
May 2020 Paper submission on weather and climate models in 16-bit arithmetic

May-Aug 2020 Data compression project (pending)

May-Aug 2020 Paper preparation and submission on sonums and sherlogs

Aug-Sep 2020 Research visit at MIT (planned)

Oct-Dec 2020 Paper preparation and submission on stochastic rounding

Jan-May 2021 Documentation and writing up of remaining projects

Jan-May 2021 Paper preparation on data compression (possibly)

Jun-Sep 2021 Thesis writing

Aug-Sep 2021 Thesis revision and submission

7.3 Transferable skills
Programming Developed many open-source software packages in the Julia language,

including parallel and distributed computing approaches, MPI, and metaprogramming.

Version control Extensive use of git, including publishing of software packages fre-
quently on GitHub and code maintenance.

Software development Acquired skills on high quality software development stan-

dards, including continuous integration, software licensing, testing and documentation

Presentation skills Created many presentations with animations, videos and interac-

tive code evaluation via Jupyter notebooks. Professional poster creation with Inkscape.

48

Appendix
A.1 Open-source software developments
SoftPosit.jl

• Authors: M Kloewer, M Giordano, C Leong

• URL: github.com/milankl/SoftPosit.jl

• License: MIT

• Version: 0.3.0

SoftPosit.jl is a software emulator for posit arithmetic. The package exports the Posit8,

Posit16, Posit32 number types among other non-standard types, as well as arithmetic

operations, conversions and additional functionality. The package is a wrapper for the

SoftPosit C-library written by C Leong.

StochasticRounding.jl
• Authors: M Kloewer

• URL: github.com/milankl/StochasticRounding.jl

• License: MIT

• Version: 0.1.0

StochasticRounding.jl is a software emulator for stochastic rounding in the Float32,

Float16 and BFloat16 number formats. Both 16bit implementations rely on conversion

to and from Float32 and stochastic rounding is only applied for arithmetic operations in

the conversion back to 16bit. Float32 with stochastic rounding uses Float64 internally.

Xoroshio128Plus is used as a high-performance random number generator.

ShallowWaters.jl
• Authors: M Kloewer

• URL: github.com/milankl/ShallowWaters.jl

• License: MIT

• Version: 0.3.0

ShallowWaters.jl is a shallow water model with a focus on type-flexibility and 16bit

number formats, which allows for integration of the shallow water equations with

49

A.1. OPEN-SOURCE SOFTWARE DEVELOPMENTS

arbitrary number formats as long as arithmetics and conversions are implemented.

ShallowWaters also allows for mixed-precision and reduced precision communication.

ShallowWaters is fully-explicit with an energy and enstrophy conserving advection

scheme and a Smagorinsky-like biharmonic diffusion operator. Tracer advection is

implemented with a semi-Lagrangian advection scheme. Runge-Kutta 4th-order is used

for pressure, advective and Coriolis terms and the continuity equation. Semi-implicit

time stepping for diffusion and bottom friction. Boundary conditions are either periodic

(only in x direction) or non-periodic super-slip, free-slip, partial-slip, or no-slip. Output

via NetCDF.

Sherlogs.jl
• Authors: M Kloewer

• URL: github.com/milankl/Sherlogs.jl

• License: MIT

• Version: 0.1.0

Sherlogs.jl provides a number format Sherlog64 that behaves like Float64, but in-

spects your code by logging all arithmetic results into a 16bit bitpattern histogram during

calculation. Sherlogs can be used to identify the largest or smallest number occuring

in your functions, and where algorithmic bottlenecks are that limit the ability for your

functions to run in low precision. A 32bit version is provided as Sherlog32, which behaves

like Float32. A 16bit version is provided as Sherlog16T, which uses T for computations as

well as for logging.

Sonums.jl
• Authors: M Kloewer

• URL: github.com/milankl/Sonums.jl

• License: MIT

• Version: 0.2.0

Sonums.jl is a software emulator for Sonums - the Self-Organizing NUMbers. A

number format that learns from data. Sonum8 is the 8bit version, Sonum16 for 16bit

computations. The package exports number types, conversions and arithmetics. Sonums

conversions are based on binary tree search, and arithmetics are based on table lookups.

Training can be done via maximum entropy or minimising the rounding error.

50

A.1. OPEN-SOURCE SOFTWARE DEVELOPMENTS

Float8s.jl
• Authors: M Kloewer, J Sarnoff

• URL: github.com/milankl/Float8s.jl

• License: MIT

• Version: 0.1.0

Float8s.jl is a software emulator for a 8bit floating-point format, with 3 exponent and

4 significant bits. The package provides the Float8 number type, as well as arithmetic

operations, conversions and additional functionality. The software emulator is based on

conversion to and from Float32, which is used for arithmetic operations.

LogFixPoint16s.jl
• Authors: M Kloewer

• URL: github.com/milankl/LogFixPoint16s.jl

• License: MIT

• Version: 0.1.0

LogFixPoint16s.jl is a software emulator for 16-bit logarithmic fixed-point numbers

with 7 signed integer bits and 8 fraction bits. The package provides the LogFixPoint16

number type, as well as arithmetic operations, conversions and additional functionality.

The software emulator is based on either integer addition or look-up tables and is

therefore a comparably fast emulator.

Lorenz96.jl
• Authors: M Kloewer

• URL: github.com/milankl/Lorenz96.jl

• License: MIT

• Version: 0.3.0

Lorenz96.jl is a type-flexible one-level Lorenz 1996 model, which supports any num-

ber type, as long as conversions to and from Float64 and arithmetics are defined. Dif-

ferent number types can be defined for prognostic variables and calculations on the

right-hand side, with automatic conversion on every time step. The equations are scaled

such that the dynamic range of numbers can be changed. The scaled equations are

written division-free.

51

A.1. OPEN-SOURCE SOFTWARE DEVELOPMENTS

Lorenz63.jl
• Authors: M Kloewer

• URL: github.com/milankl/Lorenz63.jl

• License: MIT

• Version: 0.2.0

Lorenz63.jl is a type-flexible Lorenz 1963 model, which supports any number type,

as long as conversions to and from Float64 and arithmetics are defined. The Lorenz

equations are scaled such that the dynamic range of numbers can be changed. The

scaled equations are written division-free.

Jenks.jl
• Authors: M Kloewer

• URL: github.com/milankl/Jenks.jl

• License: MIT

• Version: 0.1.0

Jenks.jl is the Jenks Natural Breaks Optimization, a data clusteringmethod tominimise

in-class variance or L1 rounding error. Jenks provides a data classification algorithm that

groups one dimensional data to minimize an in-class error norm from the class mean

but maximizes the same error norm between different classes.

52

Acknowledgements

I am very grateful for the support and very fruitful discussions with my

supervisors Tim Palmer and Peter Düben, and especially for the freedom to

develop my own ideas.

I gratefully acknowledge funding from the European Research Council un-

der grant number 741112 An Information Theoretic Approach to Improving
the Reliability of Weather and Climate Simulations and from the UK National
Environmental Researc Council (NERC) under grant number NE/L002612/1.

I would like to thank the whole Julia community for an uncountable effort

to develop a very modern high performance computing language that is

high-level, easy to learn and was proven to be increadibly useful for reduced

precision simulations. I also would like to thank everybody who developed

the matplotlib plotting library, which was used for every figure in this report.

References
BEZANSON, J., EDELMAN, A., KARPINSKI, S. & SHAH, V.B. (2017). Julia: A Fresh Approach to

Numerical Computing. SIAM Review, 59, 65–98. 9, 13
BLACKMAN, D. & VIGNA, S. (2019). Scrambled Linear Pseudorandom Number Generators.

arXiv:1805.01407 [cs]. 28
BURGESS, N., MILANOVIC, J., STEPHENS, N., MONACHOPOULOS, K. & MANSELL, D. (2019).

Bfloat16 Processing for Neural Networks. In 2019 IEEE 26th Symposium on Computer
Arithmetic (ARITH), 88–91. 2

CHAURASIYA, R., GUSTAFSON, J., SHRESTHA, R., NEUDORFER, J., NAMBIAR, S., NIYOGI, K., MER-

CHANT, F. & LEUPERS, R. (2018). Parameterized Posit Arithmetic Hardware Generator.

In 2018 IEEE 36th International Conference on Computer Design (ICCD), 334–341, IEEE,
Orlando, FL, USA. 2

CHEN, J., AL-ARS, Z. & HOFSTEE, H.P. (2018). A matrix-multiply unit for posits in reconfig-

urable logic leveraging (open)CAPI. In Proceedings of the Conference for Next Generation
Arithmetic on - CoNGA ’18, 1–5, ACM Press, Singapore, Singapore. 2, 6

CHOO, H., MUHAMMAD, K. & ROY, K. (2003). Two’s complement computation sharing

multiplier and its applications to high performance DFE. IEEE Transactions on Signal
Processing, 51, 458–469. 4, 7, 31

DAWSON, A. & DÜBEN, P.D. (2017). Rpe v5: An emulator for reduced floating-point precision

in large numerical simulations. Geoscientific Model Development, 10, 2221–2230. 2
DÜBEN, P.D. (2018). A New Number Format for Ensemble Simulations. Journal of Advances
in Modeling Earth Systems, 10, 2983–2991. 1

DÜBEN, P.D., MCNAMARA, H. & PALMER, T. (2014). The use of imprecise processing to

improve accuracy in weather & climate prediction. Journal of Computational Physics,
271, 2–18. 1, 2

GLASER, F., MACH, S., RAHIMI, A., GÜRKAYNAK, F.K., HUANG, Q. & BENINI, L. (2017). An 826

MOPS, 210 uW/MHz Unum ALU in 65 nm. arXiv:1712.01021 [cs]. 2
GUPTA, S., AGRAWAL, A., GOPALAKRISHNAN, K. & NARAYANAN, P. (2015). Deep Learning with

Limited Numerical Precision. arXiv:1502.02551 [cs, stat]. 2

54

REFERENCES

GUSTAFSON, J. (2017). Posit Arithmetic. 2, 6, 7, 8, 9, 10

GUSTAFSON, J.L. & YONEMOTO, I. (2017). Beating Floating Point at its Own Game: Posit

Arithmetic. Supercomputing Frontiers and Innovations, 4, 16. 2, 6, 10, 31
HATFIELD, S., DÜBEN, P., CHANTRY, M., KONDO, K., MIYOSHI, T. & PALMER, T. (2018). Choosing

the Optimal Numerical Precision for Data Assimilation in the Presence of Model Error.

Journal of Advances in Modeling Earth Systems, 10, 2177–2191. 37
HATFIELD, S., CHANTRY, M., DÜBEN, P. & PALMER, T. (2019). Accelerating High-Resolution

Weather Models with Deep-Learning Hardware. In Proceedings of the Platform for
Advanced Scientific Computing Conference, PASC ’19, 1–11, Association for Computing
Machinery, Zurich, Switzerland. 2

HATFIELD, S., MCRAE, A., PALMER, T. & DÜBEN, P. (2020). Single-Precision in the Tangent-

Linear and Adjoint Models of Incremental 4D-Var. Monthly Weather Review, 148, 1541–
1552. 1

JEFFRESS, S., DÜBEN, P. & PALMER, T. (2017). Bitwise efficiency in chaotic models. Proceedings
of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473, 20170144. 1,
3

JENKS, G.F. & CASPALL, F.C. (1971). Error on Choroplethic Maps: Definition, Measurement,

Reduction. Annals of the Association of American Geographers, 61, 217–244, _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8306.1971.tb00779.x. 34

JOUPPI, N.P., YOUNG, C., PATIL, N., PATTERSON, D., AGRAWAL, G., BA JWA, R., BATES, S., BHATIA,

S., BODEN, N., BORCHERS, A., BOYLE, R., CANTIN, P.L., CHAO, C., CLARK, C., CORIELL, J.,

DALEY, M., DAU, M., DEAN, J., GELB, B., GHAEMMAGHAMI, T.V., GOTTIPATI, R., GULLAND,

W., HAGMANN, R., HO, C.R., HOGBERG, D., HU, J., HUNDT, R., HURT, D., IBARZ, J., JAFFEY,

A., JAWORSKI, A., KAPLAN, A., KHAITAN, H., KILLEBREW, D., KOCH, A., KUMAR, N., LACY, S.,

LAUDON, J., LAW, J., LE, D., LEARY, C., LIU, Z., LUCKE, K., LUNDIN, A., MACKEAN, G., MAGGIORE,

A., MAHONY, M., MILLER, K., NAGARA JAN, R., NARAYANASWAMI, R., NI, R., NIX, K., NORRIE,

T., OMERNICK, M., PENUKONDA, N., PHELPS, A., ROSS, J., ROSS, M., SALEK, A., SAMADIANI,

E., SEVERN, C., SIZIKOV, G., SNELHAM, M., SOUTER, J., STEINBERG, D., SWING, A., TAN, M.,

THORSON, G., TIAN, B., TOMA, H., TUTTLE, E., VASUDEVAN, V., WALTER, R., WANG, W., WILCOX,

E. & YOON, D.H. (2017). In-Datacenter Performance Analysis of a Tensor Processing

Unit. In Proceedings of the 44th Annual International Symposium on Computer Architecture,
ISCA ’17, 1–12, Association for Computing Machinery, Toronto, ON, Canada. 1, 2

55

REFERENCES

JOUPPI, N.P., YOUNG, C., PATIL, N. & PATTERSON, D. (2018). A domain-specific architecture

for deep neural networks. Communications of the ACM, 61, 50–59. 2
KALAMKAR, D., MUDIGERE, D., MELLEMPUDI, N., DAS, D., BANERJEE, K., AVANCHA, S., VOOTURI,

D.T., JAMMALAMADAKA, N., HUANG, J., YUEN, H., YANG, J., PARK, J., HEINECKE, A., GEORGANAS,

E., SRINIVASAN, S., KUNDU, A., SMELYANSKIY, M., KAUL, B. & DUBEY, P. (2019). A Study of

BFLOAT16 for Deep Learning Training. arXiv:1905.12322 [cs, stat]. 2
KLÖWER, M. & GIORDANO, M. (2019). SoftPosit.jl - A posit arithmetic emulator. Zenodo. 9

KLÖWER, M., DÜBEN, P.D. & PALMER, T.N. (2019). Posits as an alternative to floats for

weather and climate models. In Proceedings of the Conference for Next Generation
Arithmetic 2019 on - CoNGA’19, 1–8, ACM Press, Singapore, Singapore. 2, 4, 6, 15, 27, 28,
37, 42, 44

LANGROUDI, H.F., CARMICHAEL, Z. & KUDITHIPUDI, D. (2019). Deep Learning Training on the

Edge with Low-Precision Posits. arXiv:1907.13216 [cs, stat]. 2
LEONG, S.H. (2020). SoftPosit. Zenodo. 9

LORENZ, E.N. & EMANUEL, K.A. (1998). Optimal Sites for Supplementary Weather Observa-

tions: Simulation with a Small Model. Journal of the Atmospheric Sciences, 55, 399–414.
37

MACKAY, D. (2003). Information Theory, Inference and Learning Algorithms. Cambridge
University Press, 1st edn. 3, 32

MARKIDIS, S., CHIEN, S.W.D., LAURE, E., PENG, I.B. & VETTER, J.S. (2018). NVIDIA Tensor

Core Programmability, Performance Precision. In 2018 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), 522–531. 2

PALMER, T. (2015). Modelling: Build imprecise supercomputers. Nature News, 526, 32. 1
PALMER, T.N. (2012). Towards the probabilistic Earth-system simulator: A vision for the

future of climate and weather prediction. Quarterly Journal of the Royal Meteorological
Society, 138, 841–861. 1

PALMER, T.N. (2019). Stochastic weather and climate models. Nature Reviews Physics, 1,
463–471. 2

RÜDISÜHLI, S., WALSER, A. & FUHRER, O. (2013). COSMO in single precision. Cosmo Newslet-
ter, 5–1. 1

56

REFERENCES

RUSSELL, F.P., DÜBEN, P.D., NIU, X., LUK, W. & PALMER, T. (2017). Exploiting the chaotic

behaviour of atmospheric models with reconfigurable architectures. Computer Physics
Communications, 221, 160–173. 2, 4

SILVER, J.D. & ZENDER, C.S. (2017). The compression–error trade-off for large gridded data

sets. Geoscientific Model Development, 10, 413–423. 3
THORNES, T., DÜBEN, P. & PALMER, T. (2017). On the use of scale-dependent precision

in Earth System modelling: Scale-Dependent Precision in Earth System Modelling.

Quarterly Journal of the Royal Meteorological Society, 143, 897–908. 1
TINTÓ PRIMS, O., ACOSTA, M.C., MOORE, A.M., CASTRILLO, M., SERRADELL, K., CORTÉS, A. &

DOBLAS-REYES, F.J. (2019). How to use mixed precision in ocean models: Exploring a

potential reduction of numerical precision in NEMO 4.0 and ROMS 3.6. Geoscientific
Model Development, 12, 3135–3148. 1

VAN DAM, L., PELTENBURG, J., AL-ARS, Z. & HOFSTEE, H.P. (2019). An Accelerator for Posit

Arithmetic Targeting Posit Level 1 BLAS Routines and Pair-HMM. In Proceedings of
the Conference for Next Generation Arithmetic 2019, CoNGA’19, 1–10, Association for
Computing Machinery, Singapore, Singapore. 2

VÁŇA, F., DÜBEN, P., LANG, S., PALMER, T., LEUTBECHER, M., SALMOND, D. & CARVER, G. (2017).

Single Precision in Weather Forecasting Models: An Evaluation with the IFS. Monthly
Weather Review, 145, 495–502. 1

ZENDER, C.S. (2016). Bit Grooming: Statistically accurate precision-preserving quantization

with compression, evaluated in the netCDF Operators (NCO, v4.4.8+). Geoscientific
Model Development, 9, 3199–3211. 3

57

	Contents
	1 Introduction
	2 16-bit number formats
	2.1 Integers and fixed-point numbers
	2.2 Floating-point numbers
	2.3 Posit numbers
	2.4 Logarithmic fixed-point numbers
	2.5 Decimal precision
	2.6 Stochastic rounding
	2.7 A type-flexible programming paradigm

	3 Impact on the physics
	3.1 Error growth
	3.2 Mean and variability
	3.3 Geostrophy
	3.4 Gravity waves
	3.5 Mixed precision arithmetic in the shallow water model
	Inaccurate rounding: Logarithmic fixed-point numbers

	3.6 Reduced precision communication
	3.7 Stochastic rounding

	4 Sonums
	4.1 Numbers that learn from data
	4.2 Maximum entropy training
	4.3 Minimising the decimal error
	4.4 Sonums in Lorenz 1996

	5 Sherlogs
	5.1 Logging arithmetic results
	5.2 Algorithmic information entropy

	6 Conclusions
	7 Thesis outline
	7.1 Outline
	7.2 Timeline
	7.3 Transferable skills

	Appendix
	A.1 Open-source software developments
	SoftPosit.jl
	StochasticRounding.jl
	ShallowWaters.jl
	Sherlogs.jl
	Sonums.jl
	Float8s.jl
	LogFixPoint16s.jl
	Lorenz96.jl
	Lorenz63.jl
	Jenks.jl

	Acknowledgements
	References

