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January 7, 2016

Abstract

The present study introduces the Finite Element Methods in theory and de-
scribes its implementation for an idealized two dimensional test case. The equations
of interest are the Navier-Stokes equations, describing the conservation of momen-
tum for fluid flows. Although the here presented test case is idealized, the Finite
Element Method is capable of adapting to complex domains due to its ability to
use irregularly triangulated meshes. We solve the steady Navier-Stokes equations
for an incompressible fluid with homogeneous density but variable viscosity. Doing
so, the model is able to simulate fluid flows up to Reynolds numbers of order 102.
We use a regular triangulation of a square domain with linear finite elements as
well as the bubble element for velocity in order to keep the solution stable. The
model converges with increasing resolution nx as O(n−2

x ) for pressure and velocity
and has a runtime that increases with O(n3

x). It is therefore concluded that the
Finite Element Method provides a promising framework for solving partial differ-
ential equations. Although harder to implement, it comes with several advantages
in comparison to the widely used Finite Difference Method and, depending on the
problem, should be considered as a serious alternative.
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1 Theoretical Background

1.1 The idea of the Finite Element Method

Solving partial differential equations (PDEs) numerically always goes hand in hand
with errors due to the required discretization. There exists a variety of methods
to solve these mathematical problems and the accuracy of a solution can strongly
depend on the chosen method. The best known and widely used scheme in climate
science is the Finite Difference Method (FDM) but there are also others such as
the Finite Volume Method (FVM) and the Finite Element Method (FEM). While
the FDM is based on differential quotients between individual grid points, the FEM
uses the Galerkin ansatz, where we can find the solution function of a PDE, by
constructing a linear combination of some given basis functions. Most commonly,
these basis functions are continuous, piecewise polynomials, which are referred to as
Finite Elements. Today, the FEM mostly plays a central role in modern engineering.
However, in this report we attempt to solve the fundamental equation in Fluid
Dynamics, the Navier-Stokes equation, by using the FEM method.

1.2 Finite Element Methods versus Finite Difference
Methods

The choice of the method is a key factor in determining the characteristics of a
model. The advantages and disadvantages of FEM and FDM with respect to imple-
mentation, performance and analysis are discussed below. The simple idea behind
the FDM, based on a linear Taylor Expansion, translates into a generally simple
model set up with a more regular grid structure. This set up thus requires sim-
ple boundary conditions. Different schemes concerning the temporal evolution and
spatial connection influence the stability and accuracy of the solutions. However,
the convergence and stability analysis of a model using the FDM is rather limited.
In some cases, a solution of a PDE could be strongly improved if a fraction of the
domain was resolved to a higher degree. This required refinement of the grid is
not common using FDM as irregular grids are difficult to deal with. However, this
flexibility and high adaptivity is one of the main strengths of the FEM. Grids can
be easily refined. Also, the error and stability analysis is easier to perform in the
FEM case. These advantages however come at the price of generally slower models
which are more difficult to implement.

For each individual application, a choice between both methods has to be made.
In this case, where we solve the Navier-Stokes equations on a regular grid with
simple boundaries, the FDM seems to be the better choice. However, for educational
purposes we solve this test case using FEM.



Navier Stokes and Finite Elements - Köhn, Klöwer 3

1.3 Discretization - Translating a partial differential equa-
tion into a linear equation system

Let u be the solution function of a partial differential equation. The Galerkin ansatz
approximates this solution by a linear combination of some basis functions φi, which
span the function space in which we seek the solution u. Thus

u =
∑
j

ujφj (1)

For the following partial differential equation Pu = f , where P is a linear differential
operator and forcing f is a function in Ω ⊆ Rn, every solution in u also fulfills

〈Pu, φ〉 = 〈f, φ〉, (2)

with appropriate φ′s. This so called variational or weak formulation of the partial
differential equation allows a transformation into a linear equation system, which
will be briefly demonstrated in the example case of the Poisson problem. There,
the linear differential operator is the negative Laplacian, i.e.

−∆u = f (3)

Testing this equation with the basis functions, we obtain

〈−∆u, φi〉 =
∑
j

uj〈−∆φj , φi〉 = 〈f, φi〉. (4)

The introduction of the stiffness matrix A with Aij = 〈−∆φi, φj〉 and the forcing
vector fi = 〈f, φi〉 eventually yields the linear equation system Au = f , which can
be solved numerically. To demonstrate this conversion, we solve the 1D-Poisson
problem on the unit interval (0,1) with homogeneous boundary conditions. We
divide the interval in n equally long subintervals. As finite elements, we choose the
hat function

φk(x) = 1Ik(x)
x− xk−1

xk − xk−1
+ 1Ik+1

(x)
xk+1 − x
xk+1 − xk

, (5)

where k = 1, ..., n and

1I(x) =

{
1 if x ∈ I
0 if x /∈ I.

(6)

The hat function has a small support. Using integration by parts, the variational
formulation of the PDE can be transformed to∑

j

uj〈−∆φj , φi〉 =
∑
j

uj〈−∇φj ,∇φi〉 = 〈f, φi〉. (7)

Thus the entries of the stiffness matrix can be computed through
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Aij =

∫ 1

0

∂φi(x)

∂x

∂φj(x)

∂x
dx (8)

Due to the equidistant subintervals with length h the resulting matrix has the
following symmetric shape.

Aij =
1

h



2 −1 0 . . . 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 . . . 0 −1 2


(9)

As the right hand side can almost never be computed analytically, the forcing f is
approximated by a function of the ansatz space, again through linear combination.

f ≈
∑
j

fjφj (10)

Thus, for the right hand side it follows

〈f, φi〉 =
∑
j

fj〈φj , φk〉 = M

 f1
...
fN

 (11)

and analog ous to the stiffness matrix a mass matrix M can be established, such
that

Mij =

∫
Ω
φiφjdx (12)

In the 1D-Poisson problem we can approximate the result by using the simpler
trapezoidal rule such that fk = 〈f, φk〉 ≈ hf(xk) in this equidistant case. However,
in general, knowing the analytic f requires solving equation 10 to obtain the discrete
values of fj at the nodes in the finite element space (see section 2.5).

Subsequently, the linear equation system Au = f can be solved.

1.4 Linear Finite Elements in 2D

In the example above, we only employed linear finite elements to solve the Poisson
problem. An option to improve the result is by using finite elements of higher orders.
In this study, we only use linear finite elements for simplicity. However, in contrast
to the 1D problem from above, we solve the Navier-Stokes Problem in a 2D domain.
Similar to the equidistant intervals in the 1D problem, we employ triangulation to
identify nodes on which the equation is evaluated. The general choice of finite
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Figure 1: Example for a basis function sitting on the node i with the support of the
surrounding triangles.

elements for a triangulated field are polynomials of degree ≤ r, which follow the
formula

Pr = {u(x, y) =
∑

0≤i+j≤r
0≤i,j

aijx
iyj} (13)

For linear finite elements (r = 1) we obtain u(x, y) = a0 + a1x+ a2y. The three de-
grees of freedom can then be linked to the corner nodes of every triangle. To reduce
the number of finite elements to only three, we project each individual triangle to a
unit triangle with three nodes (0, 0), (0, 1) and (1, 0). The finite elements are then
defined as the following three functions on the reference triangle

φ1
0 = 1− x− y (14a)

φ2
0 = x (14b)

φ3
0 = y (14c)

The support is in fact so small, that the finite element shows the value one on its
associated node, while it vanishes on the other two nodes. The projection func-
tion from the reference triangle to an arbitrary triangle on the domain with nodes
(p1, p2), (q1, q2) and (r1, r2) is given by

ΦT (x) = Px + p, (15)
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with

P =

(
q1 − p1 r1 − p1

q2 − p2 r2 − p2

)
, p = (p1, p2), x = (x, y).

1.5 The Navier-Stokes equations

The Navier-Stokes equations of a stationary, incompressible fluid are the following

(v · ∇)v − ν∆v +∇p = f in Ω (16a)

∇ · v = 0 in Ω (16b)

v = 0 on ∂Ω, (16c)

where v, p and ν are the 2D velocity field, pressure and kinematic viscosity, respec-
tively. Equation 16c states, that the velocity vanishes on the boundary of the chosen
domain. In contrast to the simple Stokes problem equation 16a is nonlinear due to
the (v · ∇)v term. However, this set of equations is already a simplified version as
we only consider one layer of fluid with constant density.

To transfer this set of equations into a linear equation system, we again use test
functions and thus convert the differential problem into a problem of integration.
As both, pressure and velocity are unknown , we create two ansatz spaces for the
discrete solution. The space Vh is set up by the basis {φ1, φ2, . . . , φNv} and contains
the velocity solution. The pressure solution is contained in Qh which is spanned
by the basis {ξ1, ξ2, . . . , ξNp}. Testing equation 16 then leads to the variational
formulation

〈(v · ∇)v, φ〉+ ν〈∇v,∇φ〉 − 〈p,∇ · φ〉 = 〈f, φ〉 (17a)

〈∇ · v, ξ〉 = 0 (17b)

Similar to the Poisson problem, the second and fourth term of equation 17a are
transformed using a stiffness A and mass matrix M upon discretization, respectively.
The nonlinear term (first term in equation 17a), pressure gradient term (third term
in equation 17a) as well as the divergence term in equation 17b are discretized by
the use of the nonlinear matrix N(v) and the so called divergence matrix B. The
resulting linear equation system has the following structure.

N(v)v +Av +BTp = f (18a)

Bv = 0, (18b)

where Aij = ν〈∇φi,∇φj〉 and Bij = −〈∇ · φj , ξi〉. In matrix notation, the linear
equation system can be expressed as(

A+N(v) BT

B 0

)(
v
p

)
=

(
f
0

)
(19)
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The divergence matrix is again computed by solving the integrals on the standard
triangle. The computation of the nonlinear matrix is more complicated, as the
matrix itself is dependent on the velocity. Here, the theoretical idea behind the
nonlinear matrix will be explained briefly.

The nonlinear term (v · ∇) v can be translated into the matrix N(v), using the
trilinear form n(φk, φi, φj) = 〈(φk · ∇)φi, φj〉. The matrix is then set up by

N(v)ji =
∑
k

vkn(φk, φi, φj). (20)

Thus, for the first velocity component we obtain

N(v)ji =
∑
T

|detP |

(
Nv∑
k=1

vk

(
P−1

11

∫
T̂
φ1
r∂xφ

1
sφ

1
t + P−1

21

∫
T̂
φ1
r∂yφ

1
sφ

1
t

)

+

2Nv∑
k=Nv+1

vk

(
P−1

12

∫
T̂
φ2
r∂xφ

1
sφ

1
t + P−1

22

∫
T̂
φ2
r∂yφ

1
sφ

1
t

))
, (21)

where r, s and t are the corresponding indices for k, i, j on the reference triangle.
The exact setup of all matrices (A,B,M,N(v)) will be explained related to the

2D-Navier-Stokes problem in the implementation section.

1.6 The Use of Bubble Nodes - Stability

In some cases the discretized formulation of the problem might not have a definite
solution, even though the partial differential equation has a unique solution. In
these cases, where the so called LBB-condition (Ladyschenskaja-Babuška-Brezzi)
is not fulfilled, the linear equation system is considered to be instable. There are
at least two ways to deal with this instability issue, which is also present in the
Navier-Stokes problem. One of them is the PSPG-method (Pressure-Stabilization-
Petrov-Galerkin method), in which an additional stabilization term is included in
equation 18b. However, in this case we follow the other conventional method, in
which we make use of an additional finite element, the so called bubble element for
the velocity discretization. On the standard triangle it is defined as

φ4
0 = xy(1− x− y) (22)

and has its associated bubble node at midpoint m = (1
3 ,

1
3) of the reference triangle.

Thus, the velocity field is discretized to a higher order than the pressure field,
which makes the solution stable. The bubble element is actually cubic and part of
P3 (equation 13). In contrast to the linear finite elements, this element only reaches
the value 1/27 on its associated node, i.e. φ4

0(m) = 1
27 . It still reaches the value

zero at the corner nodes, however, the corner node finite elements do not vanish at
the bubble node.

These issues have to be taken care of for the transformation between the normal
space and the finite element space when implementing the Navier-Stokes solver in
the following section.
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Figure 2: Numbering for nx = ny = 4 in the domain Ω = [0, 1] × [0, 1]. Interior nodes
(blue circles) are numbered first, row-wise from bottom left to top right. Boundary nodes
(black triangles) are numbered secondly, anti-clockwise starting from bottom left; bubble
nodes (white diamonds) are numbered thirdly, row-wise from bottom left to top right.
This numbering allows for partitioned matrices.

2 Implementing the Navier-Stokes Solver

The stationary Navier-Stokes problem (introduced in section 1.5) is implemented
for the 2D domain Ω = [0, 1] × [0, 1] using the linear finite elements φi0, i = 1, 2, 3
(section 1.4) and the bubble function φ4

0 (section 1.6).

2.1 The triangulated grid and data structure

The domain Ω is discretized using a triangulation with regularly arranged right-
angled triangles of the same size. The triangulation and the corresponding num-
bering of nodes and triangles is shown in Figure 2 for an example case in which the
number of corner nodes in x and y direction, i.e. the resolution nx and ny, equals
four.



Navier Stokes and Finite Elements - Köhn, Klöwer 9

We differentiate between different types of nodes: The corner nodes sit on the
corner of all triangles. The bubble nodes sit in the center of all triangles. The corner
nodes are further subdivided into boundary nodes, which sit on the boundary of the
domain and inner or interior nodes that sit within the domain.

Independent of the resolution, the node numbering always follows the same pat-
tern: a) the interior nodes row-wise from bottom left to top right, b) the boundary
nodes anti-clockwise beginning in the bottom left corner and c) the bubble nodes
row-wise from bottom left to top right. In contrast, the triangles are just numbered
row-wise from bottom left to top right. The used node numbering comes with the
advantage of providing partitioned operator matrices as discussed in section 2.3.

The operator matrices are set up by multiplication and integration of overlapping
finite elements and their derivatives. Due to the small support of the finite elements,
there are only few that overlap. Defining neighbouring nodes as those whose finite
elements provide some overlap, finite elements that sit on boundary nodes have 3
to 7 neighbours (2 to 4 corner nodes and 1 to 3 bubble nodes). Interior nodes have
always 12 neighbours (6 corner nodes and 6 bubble nodes) and bubble nodes have
always 3 neighbours (the adjacent corners of the associated triangle).

Thus, there is a maximum of 12 entries per row or column of the operator
matrices and many entries are therefore zero, so that the use of sparse matrices
proves to be computationally significantly more efficient.

2.2 Ansatz space

Using the finite elements φi0, i ∈ {1, 2, 3, 4} (as introduced in section 1.4), we search
for a solution for the velocity v in the space Vh, spanned by the two-dimensional
basis made up of

φ1 =

(
φ1

0

0

)
, φ2 =

(
φ2

0

0

)
, φ3 =

(
φ3

0

0

)
, φ4 =

(
φ4

0

0

)
,

φ5 =

(
0
φ1

0

)
, φ6 =

(
0
φ2

0

)
, φ7 =

(
0
φ3

0

)
, φ8 =

(
0
φ4

0

)
. (23)

The ansatz space Qh for the pressure p is spanned by the one-dimensional basis
made up of

ξ1 = φ1
0, ξ2 = φ2

0, ξ3 = φ3
0, ξ4 = φ4

0. (24)

2.3 Stiffness, Divergence and Mass Matrix

The integrals for the different terms in the Navier-Stokes equations (see section 1.5,
especially equation 17) are computed using the finite elements φi, ξi (section 2.2)
on the reference triangle. By using the transformation function ΦT (equation 15)
the integral values can be projected onto any triangle in the domain. This way,
we obtain the stiffness, divergence and mass matrix, which will be briefly presented
below.
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The effect of the node numbering is, that the stiffness matrix S is partitioned
with the following block structure

S =

S0,0 S0,b S0,β

Sb,0 Sb,b Sb,β
Sβ,0 Sβ,b Sβ,β

 (25)

where the indices 0, b and β refer to inner, boundary and bubble nodes, respectively.
The double index implies the interaction between two groups of nodes. Due to the
homogeneous boundary conditions in v, the velocity is zero on the boundary and
thus the stiffness matrix reduces to

S =

(
S0,0 S0,β

Sβ,0 Sβ,β

)
(26)

To apply the stiffness matrix S to both velocity components, we arrange matrix A
from the Navier Stokes equation as

A =

(
S 0
0 S

)
. (27)

The divergence matrix B also has the block structure with the general appearance

B =

(
B1

0,0 B1
0,b B1

0,β B2
0,0 B2

0,b B2
0,β

B1
b,0 B1

b,b B1
b,β B2

b,0 B2
b,b B2

b,β

)
(28)

The superscripts 1 and 2 denote the association with the first and the second ve-
locity component, respectively. A third row is not existing, as the pressure field is
not defined on bubble nodes. Analogously to S, i.e. by taking the homogeneous
boundary conditions into account, B can be reduced to

B =
(
B1

0,0 B1
0,β B2

0,0 B2
0,β

)
(29)

The mass matrix weights the forcing nodes with the size of the the respective triangle
and the choice of the finite element within.As the forcing consists of two components
the mass matrix M has the partitioned structure

M =

(
M0 0
0 M0

)
(30)

The M0 block itself is structured as

M0 =

(
M0,0 Mb,0 M0,β

Mβ,0 Mβ,b Mβ,β

)
(31)

M0 is not quadratic, as the forcing value from the boundary nodes is projected
onto the bubble and interior nodes, whereas vice versa they are not, due to the
homogeneous boundary conditions in p and v.
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2.4 Nonlinear Matrix

The nonlinear matrix N(v)ji depends on the velocity v. Only the integrals in
equation 21 are therefore precomputed. As we chose the same one-dimensional
basis φi0 for each of the two components of the two-dimensional basis for v (see
equation 23 there are only two different tensors N1

kji and N2
kji with i, j, k = 1, 2, 3, 4

to store. The matrix N that results for a given velocity v from equation 21 is again
simplified due to the homogeneous boundary conditions as

N =

(
N0,0 N0,β

Nβ,0 Nβ,β

)
. (32)

In fact, N can be included in the stiffness matrix A, so that

A =

(
S +N 0

0 S +N

)
. (33)

2.5 Projection and Reprojection Matrix

The projection from the (x, y) space, i.e. the normal space into the finite element
space and back is obtained from the ansatz equation

f =
∑
j

fjφj (34)

with a projection matrix Q and a reprojection matrix R so that

Qf(xj) = fj , Rfj = f(xj) (35)

As the finite elements sitting on one corner node are zero at all other corner nodes
Q,R are identity matrices without bubble nodes. However, as the finite elements
on corner nodes are non-zero on bubble nodes their values have to be taken into
account. For the midpoint m of the triangle (i.e. the location of the bubble node)
we follow from equation 34

f(m) = f1φ
1
0(m) + f2φ

2
0(m) + f3φ

3
0(m) + f4φ

4
0(m) (36)

where fi, i ∈ {1, 2, 3} represent the value of the three corner nodes and f4 represents
the value of the bubble node. For the φi as given in section 1.4 and 1.6 this is

f(m) =
1

3
(f1 + f2 + f3) +

1

27
f4. (37)

This linear combination is then written in form of a matrix multiplication with R.
Note, that this reprojection could be done onto arbitrary points in the domain Ω.
R is therefore not necessarily quadratic.

In the case of transforming the analytic form of the forcing f(x) into the finite
element space to obtain the values fj , we have for all corner nodes xj
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f(xj) = fj . (38)

However, for the bubble node m we have to rearrange equation 36, this time with
f4 as unknown, i.e.

f4 = 27(f(m)− 1

3
(f1 + f2 + f3)). (39)

Again, we can write this as a linear operation in terms of a matrix multiplication
with Q.

2.6 Solving the linear equation system

2.6.1 The Uzawa Algorithm (for the linear case)

Ignoring the nonlinear N(v) term, the linear equation system in equation 19 de-
scribes a saddle point problem, where A is a positive definite matrix. To solve such
a problem, the Schur Element S = BA−1BT is introduced, which itself is positive
definite, if the LBB condition is fulfilled, by multiplying the first equation of the lin-
ear equation system by BA−1. The resulting equation Sp = BA−1f can be used to
calculate the pressure p and subsequently the velocity v by solving Av = f−BTp.
As the computation of the Schur element S is computationally too expensive, the
iterative Uzawa Algorithm is used instead. This so called preconditioned gradient
method requires an initial guess of the pressure and velocity field (p(0),v(0)), up-
dates these over and over again and converges to the solutions for p and v. The
algorithm for this computation is stated below. Along the way, it calculates an
optimal step width, in which the solutions are updated. This allows for a relatively
fast convergence, compared to algorithms with prescribed and constant step widths.
The algorithm stops iterating, once the updates of the solutions have dropped below
a certain tolerance level (TOL).

Uzawa Algorithm with optimal step width

1: k = 0, choose start pressure p(0)

2: Solve Av(0) = f−BT p(0)

3: k ← k + 1, compute defect d(k) = Bv(k)

4: Solve Me(k) = d(k)

5: compute b(k) = BT e(k)

6: solve Poisson problem Aw(k) = −b(k)

7: compute step witdh αk = 〈d(k),e(k)〉
〈−w(k),b(k)〉

8: do the corrections p(k) = p(k−1) + αke
(k), v(k) = v(k−1) + αkw

(k)

9: If αk||e(k)|| ≥ TOL, goto 3.

However, the Uzawa algorithm only solves the linear problem. Thus, we need to
implement a scheme that also accounts for the nonlinear terms.
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2.6.2 (Quasi-) Newton scheme

The entire nonlinear stationary Navier-Stokes problem can be written as

J(v,p) =

(
Av +N(v)v +BTp− f

Bv

)
= 0. (40)

The solution x∗ = (v∗,p∗) can then be approximated by a linear expansion following
Taylor’s theorem around an original guess xn. Thus, we can iteratively update the
solution by solving the equation

xn+1 = xn − J ′(xn)−1(J(xn)), (41)

which brings us closer and closer to x∗, given that the original guess is close enough
to the solution. However, as inverting the matrix J ′(xn) is again, computationally
too expensive, we will pursue a different scheme where we at first explicitly solve the
equation J ′(xn)dn = J(xn) and subsequently update the solution xn+1 = xn − dn
with a defect dn. The derivative of J is given by

J ′(v,p)(w,q) =

(
Aw +N(w)v +N(v)w +BTq− f

Bw

)
. (42)

Ignoring the unstable term N(w)v we end up with the linear equation system

Adn +N(vn)dn +BTen = Avn +N(vn)vn +BTpn − f (43)

Bdn = Bvn, (44)

where dn and en represent the defects by which the velocity and pressure fields are
updated: vn+1 = vn − dn and pn+1 = pn − en. As the linear equation system
has a saddle point structure, one can use the Uzawa algorithm within each Newton
iteration to solve for the defects dn and en. Again, if the defects drop below a
chosen level of tolerance, the Newton scheme is stopped.

3 Testing the code

3.1 Test functions

To analyse the numerical solution of the finite element solver, we construct the
forcing f from the following pressure p and velocity v = (v1, v2) that fulfill equations
16b and 16c

v1 = sin2(πx) sin(πy) cos(πy) (45a)

v2 = − sin2(πy) sin(πx) cos(πx) (45b)

p = xy(1− x− y). (45c)
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Figure 3: Analytic solution for pressure p and velocity v = (v1, v2) of the steady Navier-
Stokes equations with forcing f and viscosity ν = 1e -1 (see equations 45 and 46). The
displayed domain is x = y = [0, 1] in all subplots. The quiverkey for (a) is given in the
upper right corner.

Equation 16a then yields the forcing f = (f1, f2) as

f1 = (1− 2x)y(1− y)

− ν2π2
(
cos2(πx)− 3 sin2(πx)

)
sin(πy) cos(πy)

+ π sin3(πx) sin2(πy) cos(πx) (46a)

f2 = (1− 2y)x(1− x)

+ ν2π2
(
cos2(πy)− 3 sin2(πy)

)
sin(πx) cos(πx)

+ π sin3(πy) sin2(πx) cos(πy), (46b)

where each component consists of a term resulting from the pressure gradient (first
line), one from diffusion (second line) and one from advection (third line). Hence,
we have an analytic solution (equation 45) for the steady Navier-Stokes equations
(equation 16) if forced with f (equation 46).
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Figure 4: Same as Fig. 3 but for the numerical solution with finite elements using
nx = ny = 30.

3.2 Results

The numerical solution of the steady Navier-Stokes equations is obtained from the
finite element solver with a grid resolution of nx = ny = 30 and viscosity ν =1e -1
(Fig. 4). Tolerances τ for the Uzawa and Quasi Newton algorithms are set to
τuz = 1e -5 and τqn = 1e -3. The numerical solution and compares well to the
analytic solution (Fig. 3). The applied forcing f is mainly the superposition of an
anti-clockwise rotating whirl and a convergence in the center of the domain. The
pressure p is larger in the center of the domain and vanishes at the boundary, the
pressure gradient force therefore counteracts the convergence of the forcing. The
velocity v follows the whirl of f producing an anti-clockwise rotating eddy.

In order to analyse the error we define the absolute error εabs and the relative
error εrel of a variable ζ and its numerical approximation ζ̃ as

εabs = ζ̃ − ζ, εrel =
ζ̃ − ζ
ζ

. (47)
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Figure 5: The error between analytic solution (Fig. 3) and the numerical solution (Fig. 4)
with finite elements. Absolute and relative error are defined as in section 3.2. Boundary
nodes are omitted for p, as p = 0 at the boundary for the analytic solution. Black arrows
in (a) correspond to interior nodes, red arrows to bubble nodes.

Accordingly, we define a mean relative error ε̄rel by summing over all gridpoints i = 1...n

ε̄rel =

√
1
n

∑
i

(
ζ̃i − ζi

)2

√
1
n

∑
i ζ

2
i

(48)

The pattern of p is in the numerical solution slightly tilted in a anti-clockwise
direction as coinciding with the sign of the relative error εrel close to the boundaries
(Fig. 5). The largest relative errors of pressure p are confined to the boundaries,
and reach further into the interior for larger viscosity ν (not shown). The absolute
error of velocity v reveals that the eddy is spinning slower in the numerical solution
compared to the analytic. The relative error of v1, v2 is larger for bubble nodes (Fig.
6b) and mainly confined to the boundaries and at x = 0.5 as well as y = 0.5. This
follows as these are the regions where the analytic solution vanishes.
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Figure 6: Error and runtime dependence on the resolution nx. Solid lines represent (a)
n−2
x power law; (b) n−2

x power law; and (c) n3
x power law. The power laws are chosen so

that they resemble the slope of the data points. Symbols are coloured according to nx.

3.3 Dependency of the error and of runtime on the grid
resolution

In order to investigate how the error and the runtime changes with changing grid
resolution we use

nx ∈ {10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80}

and ny = nx. The mean relative error ε̄rel for p decreases like O(n−2
x ). The mean

relative error ε̄rel for v shows a similar behaviour (Fig. 6b). However, the error is
larger for bubble nodes than for interior nodes. The runtime is observed to behave
like O(n3

x) (Fig. 6c), which is due to an increased runtime of the Uzawa algorithm
(Fig. 7). The Uzawa iterations increase linearly with nx. However, there is no
increase in the Quasi Newton iterations, which is always 4.

The error decay of O(n−2
x ) is expected in a result from linear finite elements that

were used. Since the Uzawa iterations increase linearly with nx, and the runtime
of each iteration is based on solving a linear equation system, which in turn has a
runtime of O(n2

x), due to sparse matrices, the overall runtime is expected to increase
like O(n3

x). However, we only reach this behaviour using an LU-decomposition.
The advantage hereby is, that the computationally expensive calculation (i.e. the
decomposition itself) is only done once per each Quasi Newton step. Solving the
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Figure 7: Uzawa iterations and runtime for each Quasi Newton step for different resolu-
tions nx. For all resolutions the Quasi Newton scheme converges after 4 iterations. The
viscosity is for all resolutions kept fixed at ν = 1e -1.

linear equation system is then a trivial operation only involving substitution.

3.4 Dependency on Reynolds Number

In order to investigate how the error and the runtime changes with viscosity ν we
use

ν ∈ {1, .9, .8, .7, .6, .5, .4, .3, .2, .1,
.09, .08, .07, .06, .05, .04, .03, .02, .01,

.009, .008, .007, .006, .005}. (49)

and keep the resolution nx = 30 to be constant.
For different ranges of ν we observe qualitatively different behaviour. At least

two regimes can be identified. The Reynolds number is estimated as Re = UL
ν = 1

2ν
with L = 1 and U = 0.5. For ν > 0.1, which implies Re < 5 this is the small
Reynolds number case and for ν ≤ 0.1 this is the large Reynolds number case, with
5 ≤ Re ≤ 100. Note, however, that large is meant in a relative sense. In general,
some turbulent flows can reach Reynolds numbers larger than 105 which is beyond
the scope of this study.

For small Reynolds numbers the relative error in p increases linearly with in-
creasing ν (Fig. 8a), whereas the relative error in v is constant (Fig. 8b). For
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Figure 8: Error and runtime dependence on the viscosity ν. Solid lines represent (a) ν1

power law, i.e. linear; (b) ν1/20 power law; and (c) ν−3 power law. The power laws are
chosen so that they resemble the slope of data points in certain ranges of ν. Circles are
coloured according to ν.

large Reynolds numbers, however, this behaviour changes: the relative error in p
approaches some limit around 4% and is rather constant compared to the linear
dependence on ν in the small Reynolds number case. On the contrary, the relative
error in v is decreasing with increasing Re with very weak power law (on the order
of 1/20), which is still comparably constant. The runtime is fairly constant for small
Reynolds numbers with the model taking less than a second to converge, although
showing some step function-like behaviour (Fig. 8c). For large Reynolds numbers
the runtime increases with a power law of O(Re3).

Analyzing the number of iterations and runtime for each Uzawa algorithm (Fig.
9) reveals that this increase in runtime has two reasons: The number of Uzawa
iterations increases drastically for the largest considered Reynolds numbers so that
also the runtime for each of the Uzawa convergences increases. The runtime of each
Uzawa algorithm is observed to be linearly dependent on the number of iterations,
as in the previous subsection for changing resolution. Additionally, the runtime
for the largest considered Reynolds numbers also increases as the number of Quasi
Newton steps is increasing from previously only 4 up to 8.

Hence, we conclude that for changing the resolution nx changes in errors and
runtime statistics show a behaviour that is explainable with a power law. However,
changing the Reynolds numbers, which increases the relative importance of the non-
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Figure 9: Uzawa iterations and runtime for each Quasi Newton step for different viscosities
ν. The resolution was kept fixed at nx = 30.

linear terms causes some behaviour that is far more complicated and can only be
described regime-wise, if at all, with power laws.

4 Concluding discussions

The Finite Element Method presented in this study is tested solving the steady
Navier-Stokes equations in a rectangular two dimensional domain with a regular
triangulation. The linear finite elements are chosen as basis functions as well as the
bubble element for velocity in order to not violate the LBB-condition. The model
is observed to have an error convergence that behaves like O(n−2

x ) with changing
resolution which agrees with the theory due to the use of linear finite elements.
The runtime increases as a function of n3

x, a behaviour that is only reached with
sparse matrices and LU-decomposition. Changing the viscosity of the fluid, allows
to study the model’s behaviour in regimes with Reynolds numbers up to order 102.
Convergence and runtime analysis reveals that the increasing nonlinearity of the
system also projects onto error, runtime and iteration, which are only regime-wise
explainable with power laws. Although the present study was more for the sake of
educational purposes, it is concluded that the Finite Element Method provides a
promising framework in order to solve the Navier-Stokes equations numerically in
complex domains for the cost of a harder implementation in comparison to the Finite
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Difference Method. The present model could be further improved by implementing
algorithms for grid refinement, complex boundaries, higher order finite elements and
a temporal derivative in the underlying equations.
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